Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683880

RESUMO

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Assuntos
Drosophila melanogaster , Ectoderma , Gastrulação , Mesoderma , Miosina Tipo II , Animais , Mesoderma/embriologia , Mesoderma/citologia , Gastrulação/fisiologia , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriologia , Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Morfogênese , Padronização Corporal/fisiologia , Drosophila/embriologia
2.
Opt Lett ; 49(15): 4102-4105, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090869

RESUMO

Thermal annealing of thin metal films induces morphology changes that have a dramatic effect in the optical properties. Here we propose an asymmetric Fabry-Perot resonator consisting of a top metal film, a dielectric spacer, and a bottom metal mirror that can display a diverse infrared response. Thermally induced morphology changes result in large reflectivity variations within a limited temperature range following the top film transition between conductive, highly lossy, and transparent regimes. This behavior arises from the combination of the top film properties with interference effects in the multilayer. Furthermore, the proposed structure holds promise for potential sensing applications, as its optical response displays four times larger temperature sensitivity than a single film.

3.
Macromol Rapid Commun ; 45(15): e2400111, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749490

RESUMO

Today, humidity sensors have become an integral part of the daily lives. In particular, humidity sensors using an electronic measuring principle have become the standard. Although these sensors have proven to be a stable measurement method, they have some disadvantages, such as their long response time or the danger of using them in explosive environments. This work introduces photonic crystals as an alternative optical measurement approach. The novel technology of ultra-fast two-photon polymerisation printing is combined with a thin-film deposition process, namely iCVD. This allows to print large area high-precision 3D templates, which are subsequently coated with a humidity responsive hydrogel thin film (p(HEMA) of 20 nm.The limits of 2PP technology are being pushed allowing the production ofs table and periodic large-area 3D structures. The flexible customization of hydrogels for ambient conditions make them exceptionally promising for a wide range of sensing applications. Additionally, optical methods for measuring humidity seem to be an excellent alternative to overcome the limitations for current state of the art humidity sensors. The optical detection of changes in ambient air humidity is achieved by observing color changes of the printed structure within the visible wavelength range.


Assuntos
Umidade , Hidrogéis , Fótons , Impressão Tridimensional , Hidrogéis/química
4.
J Am Chem Soc ; 145(12): 6880-6887, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36931284

RESUMO

In life, molecular architectures, like the cytoskeletal proteins or the nucleolus, catalyze the conversion of chemical fuels to perform their functions. For example, tubulin catalyzes the hydrolysis of GTP to form a dynamic cytoskeletal network. In contrast, myosin uses the energy obtained by catalyzing the hydrolysis of ATP to exert forces. Artificial examples of such beautiful architectures are scarce partly because synthetic chemically fueled reaction cycles are relatively rare. Here, we introduce a new chemical reaction cycle driven by the hydration of a carbodiimide. Unlike other carbodiimide-fueled reaction cycles, the proposed cycle forms a transient 5(4H)-oxazolone. The reaction cycle is efficient in forming the transient product and is robust to operate under a wide range of fuel inputs, pH, and temperatures. The versatility of the precursors is vast, and we demonstrate several molecular designs that yield chemically fueled droplets, fibers, and crystals. We anticipate that the reaction cycle can offer a range of other assemblies and, due to its versatility, can also be incorporated into molecular motors and machines.

5.
PLoS Comput Biol ; 18(1): e1009812, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089922

RESUMO

Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules.


Assuntos
Actomiosina , Junções Aderentes , Actomiosina/metabolismo , Junções Aderentes/fisiologia , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Epitélio/metabolismo , Morfogênese
6.
Angew Chem Int Ed Engl ; 62(41): e202309318, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549224

RESUMO

Complex coacervation describes the liquid-liquid phase separation of oppositely charged polymers. Active coacervates are droplets in which one of the electrolyte's affinity is regulated by chemical reactions. These droplets are particularly interesting because they are tightly regulated by reaction kinetics. For example, they serve as a model for membraneless organelles that are also often regulated by biochemical transformations such as post-translational modifications. They are also a great protocell model or could be used to synthesize life-they spontaneously emerge in response to reagents, compete, and decay when all nutrients have been consumed. However, the role of the unreactive building blocks, e.g., the polymeric compounds, is poorly understood. Here, we show the important role of the chemically innocent, unreactive polyanion of our chemically fueled coacervation droplets. We show that the polyanion drastically influences the resulting droplets' life cycle without influencing the chemical reaction cycle-either they are very dynamic or have a delayed dissolution. Additionally, we derive a mechanistic understanding of our observations and show how additives and rational polymer design help to create the desired coacervate emulsion life cycles.

7.
PLoS Biol ; 17(12): e3000522, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31805038

RESUMO

In epithelia, tricellular vertices are emerging as important sites for the regulation of epithelial integrity and function. Compared to bicellular contacts, however, much less is known. In particular, resident proteins at tricellular vertices were identified only at occluding junctions, with none known at adherens junctions (AJs). In a previous study, we discovered that in Drosophila embryos, the adhesion molecule Sidekick (Sdk), well-known in invertebrates and vertebrates for its role in the visual system, localises at tricellular vertices at the level of AJs. Here, we survey a wide range of Drosophila epithelia and establish that Sdk is a resident protein at tricellular AJs (tAJs), the first of its kind. Clonal analysis showed that two cells, rather than three cells, contributing Sdk are sufficient for tAJ localisation. Super-resolution imaging using structured illumination reveals that Sdk proteins form string-like structures at vertices. Postulating that Sdk may have a role in epithelia where AJs are actively remodelled, we analysed the phenotype of sdk null mutant embryos during Drosophila axis extension using quantitative methods. We find that apical cell shapes are abnormal in sdk mutants, suggesting a defect in tissue remodelling during convergence and extension. Moreover, adhesion at apical vertices is compromised in rearranging cells, with apical tears in the cortex forming and persisting throughout axis extension, especially at the centres of rosettes. Finally, we show that polarised cell intercalation is decreased in sdk mutants. Mathematical modelling of the cell behaviours supports the notion that the T1 transitions of polarised cell intercalation are delayed in sdk mutants, in particular in rosettes. We propose that this delay, in combination with a change in the mechanical properties of the converging and extending tissue, causes the abnormal apical cell shapes in sdk mutant embryos.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Proteínas do Olho/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Junções Íntimas/fisiologia , Junções Aderentes/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Polaridade Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Epitélio/metabolismo , Proteínas do Olho/fisiologia , Proteínas de Membrana/metabolismo , Moléculas de Adesão de Célula Nervosa/fisiologia
8.
Macromol Rapid Commun ; 43(19): e2200150, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35770908

RESUMO

The response time of state-of-the-art humidity sensors is ≈8 s. A faster tracking of humidity change is especially required for health care devices. This research is focused on the direct nanostructuring of a humidity-sensitive polymer thin film and it is combined with an optical read-out method. The goal is to improve the response time by changing the surface-to-volume ratio of the thin film and to test a different measurement method compared to state-of-the-art sensors. Large and homogeneous nanostructured areas are fabricated by nanoimprint lithography on poly(2-hydroxyethyl methacrylate) thin films. Those thin films are made by initiated chemical vapor deposition (iCVD). To the author's knowledge, this is the first time nanoimprint lithography is applied on iCVD polymer thin films. With the imprinting process, a diffraction grating is developed in the visible wavelength regime. The optical and physicochemical behavior of the nanostructures is modeled with multi-physic simulations. After successful modeling and fabrication a first proof of concept shows that humidity dependency by using an optical detection of the first diffraction order peak is observable. The response time of the structured thin film results to be at least three times faster compared to commercial sensors.


Assuntos
Hidrogéis , Nanoestruturas , Umidade , Nanoestruturas/química , Polímeros/química
9.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808243

RESUMO

This work presents a method to determine the type of Lamb mode (antisymmetric or symmetric) that propagates through a lithium-ion pouch cell. To determine the type of mode and the group velocity at a specific frequency, two- and three-transducer setups were created. For these setups, it is important that all transducers have the same polarization direction. Two transducers are affixed to the center of the cell at a distance of several centimeters from each other so that the group velocity can be determined. Using cross-correlation, the group velocity of the emerging mode can be calculated. The measurement setup and the processing method was first validated with experiments on acrylic glass and aluminum plates. The measurements were supported with FEM simulations and a numerically calculated model. The output voltages of the receiving piezo-elements obtained in the FEM simulation are in agreement with the underlying theories. The phase shift, which results from the output voltage of the piezo-elements mounted one above the other on different sides of the plate, shows the type of mode. The results of the experimental determination of the Lamb mode that propagates through a lithium-ion pouch cell were validated with a numerically calculated multi-layer model and therefore validate this novel experimental approach.

10.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236246

RESUMO

Photothermal spectroscopy (PTS) is a promising sensing technique for the measurement of gases and aerosols. PTS systems using a Fabry-Pérot interferometer (FPI) are considered particularly promising owing to their robustness and potential for miniaturization. However, limited information is available on viable procedures for signal improvement through parameter tuning. In our work, we use an FPI-based PTS configuration, in which the excitation laser irradiates the target collinearly to the flowing gas. We demonstrate that the generated thermal wave, and thus the signal intensity, is significantly affected by the ratio between excitation modulation frequency and gas flow velocity towards another. We provide an analytical model that predicts the signal intensity with particular considerations of these two parameter settings and validate the findings experimentally. The results reveal the existence of an optimal working regime, depending on the modulation frequency and flow velocity.

11.
Angew Chem Int Ed Engl ; 61(32): e202203928, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657164

RESUMO

Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet-based microfluidics to encapsulate a fuel-driven cycle that drives phase separation into coacervate-based droplets to overcome this challenge. This approach enables the analysis of every coacervate-based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate-based droplets and their properties. We observed that coacervate-based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate-based droplets enables future selection- or evolution-based studies.


Assuntos
Microfluídica , Cinética , Microfluídica/métodos
12.
Angew Chem Int Ed Engl ; 61(46): e202211905, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36067054

RESUMO

Membraneless organelles are droplets in the cytosol that are regulated by chemical reactions. Increasing studies suggest that they are internally organized. However, how these subcompartments are regulated remains elusive. Herein, we describe a complex coacervate-based model composed of two polyanions and a short peptide. With a chemical reaction cycle, we control the affinity of the peptide for the polyelectrolytes leading to distinct regimes inside the phase diagram. We study the transitions from one regime to another and identify new transitions that can only occur under kinetic control. Finally, we show that the chemical reaction cycle controls the liquidity of the droplets offering insights into how active processes inside cells play an important role in tuning the liquid state of membraneless organelles. Our work demonstrates that not only thermodynamic properties but also kinetics should be considered in the organization of multiple phases in droplets.


Assuntos
Peptídeos , Cinética
13.
J Am Chem Soc ; 143(20): 7719-7725, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978418

RESUMO

In dynamic combinatorial libraries, molecules react with each other reversibly to form intricate networks under thermodynamic control. In biological systems, chemical reaction networks operate under kinetic control by the transduction of chemical energy. We thus introduced the notion of energy transduction, via chemical reaction cycles, to a dynamic combinatorial library. In the library, monomers can be oligomerized, oligomers can be deoligomerized, and oligomers can recombine. Interestingly, we found that the dynamics of the library's components were dominated by transacylation, which is an equilibrium reaction. In contrast, the library's dynamics were dictated by fuel-driven activation, which is a nonequilibrium reaction. Finally, we found that self-assembly can play a large role in affecting the reaction's kinetics via feedback mechanisms. The interplay of the simultaneously operating reactions and feedback mechanisms can result in hysteresis effects in which the outcome of the competition for fuel depends on events that occurred in the past. In future work, we envision diversifying the library by modifying building blocks with catalytically active motifs and information-containing monomers.

14.
J Am Chem Soc ; 143(12): 4782-4789, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750125

RESUMO

Complex coacervated-based assemblies form when two oppositely charged polyelectrolytes combine to phase separate into a supramolecular architecture. These architectures range from complex coacervate droplets, spherical and worm-like micelles, to vesicles. These assemblies are widely applied, for example, in the food industry, and as underwater or medical adhesives, but they can also serve as a great model for biological assemblies. Indeed, biology relies on complex coacervation to form so-called membraneless organelles, dynamic and transient droplets formed by the coacervation of nucleic acids and proteins. To regulate their function, membraneless organelles are dynamically maintained by chemical reaction cycles, including phosphorylation and dephosphorylation, but exact mechanisms remain elusive. Recently, some model systems also regulated by chemical reaction cycles have been introduced, but how to design such systems and how molecular design affects their properties is unclear. In this work, we test a series of cationic peptides for their chemically fueled coacervation, and we test how their design can affect the dynamics of assembly and disassembly of the emerging structures. We combine them with both homo- and block copolymers and study the morphologies of the assemblies, including morphological transitions that are driven by the chemical reaction cycle. We deduce heuristic design rules that can be applied to other chemically regulated systems. These rules will help develop membraneless organelle model systems and lead to exciting new applications of complex coacervate-based examples like temporary adhesives.


Assuntos
Peptídeos/química , Polieletrólitos/química , Modelos Moleculares , Estrutura Molecular
15.
J Am Chem Soc ; 142(33): 14142-14149, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787245

RESUMO

In living systems, fuel-driven assembly is ubiquitous, and examples include the formation of microtubules or actin bundles. These structures have inspired researchers to develop synthetic counterparts, leading to exciting new behaviors in man-made structures. However, most of these examples are serendipitous discoveries because clear design rules do not yet exist. In this work, we show design rules to drive peptide self-assembly regulated by a fuel-driven reaction cycle. We demonstrate that, by altering the ratio of attractive to repulsive interactions between peptides, the behavior can be toggled between no assembly, fuel-driven dissipative self-assembly, and a state in which the system is permanently assembled. These rules can be generalized for other peptide sequences. In addition, our finding is explained in the context of the energy landscapes of self-assembly. We anticipate that our design rules can further aid the field and help the development of autonomous materials with life-like properties.


Assuntos
Peptídeos/síntese química , Estrutura Molecular , Peptídeos/química
16.
J Am Chem Soc ; 142(49): 20837-20844, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237773

RESUMO

In biology, self-assembly of proteins and energy-consuming reaction cycles are intricately coupled. For example, tubulin is activated and deactivated for assembly by a guanosine triphosphate (GTP)-driven reaction cycle, and the emerging microtubules catalyze this reaction cycle by changing the microenvironment of the activated tubulin. Recently, synthetic analogs of chemically fueled assemblies have emerged, but examples in which assembly and reaction cycles are reciprocally coupled remain rare. In this work, we report a peptide that can be activated and deactivated for self-assembly. The emerging assemblies change the microenvironment of their building blocks, which consequently accelerate the rates of building block deactivation and reactivation. We quantitatively understand the mechanisms at play, and we are thus able to tune the catalysis by molecular design of the peptide precursor.

17.
Opt Express ; 28(14): 20177-20190, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680083

RESUMO

Recent studies on ultrafine particles (UFP), which are smaller than 100 nm, emphasized their hazardous potential to the human organism. They are comparable in size to typical nano-organisms such as viruses and can penetrate physiological barriers in a similar way. Currently, there are no low-cost and miniaturized detectors for UFP available. In our first experiments with an integrated evanescent field particle detector, we could already successfully detect single 200 nm polystyrene latex (PSL) spheres, although the implemented waveguide geometry was only rudimentary optimized with costly 3D simulations. We developed a fast and structured optimization model for waveguide geometry and operation wavelength of an integrated evanescent field particle detector in order to exploit its full potential for the detection of discrete analytes in the UFP size range. The optimization model is based on a modified formulation of Mie theory and its computational effort is reduced by a factor of 100 compared to 3D simulations. The optimization potential of the sensor response signal is demonstrated for several waveguide geometries that can be produced with established semiconductor fabrication technology at high production volumes and low costs. An optimized silicon nitride waveguide features sensor response signals that are about one order of magnitude higher compared to previous experiments, which pushes the limit of detection even further down to particle sizes below 100 nm. A small integrated evanescent field particle detector based on this optimized waveguide will be used for the first low-cost and miniaturized devices that can monitor the personal exposure to UFP.

18.
Clin Oral Investig ; 24(11): 4005-4018, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32430774

RESUMO

OBJECTIVES: The purpose of the present study was to analyze treatment outcome with a full-occlusion biofeedback (BFB) splint on sleep bruxism (SB) and TMD pain compared with treatment with an adjusted occlusal splint (AOS). MATERIALS AND METHODS: Forty-one patients were randomly allocated to a test (BFB) or a control (AOS) group and monitored over a 3-month period. Output variables were frequency and duration of bruxing events (bursts) and various pain symptoms. RESULTS: The BFB group showed a statistically significant reduction in the frequency and duration of bursts and a statistically significant improvement in the patients' global well-being and the facial muscle pain parameter. After the treatment was stopped, the BFB group showed a statistically significant reduction in the average and maximum duration but no statistically significant change in the frequency of bursts. CONCLUSIONS: The tested BFB splint is highly effective in reducing SB at the subconscious level, i.e., without waking the patient, and in achieving improvements in global pain perception. The results suggest that the BFB splint also provides a better treatment option for bruxism-related pain than an AOS. However, further research is needed, and specifically studies with a larger patient population displaying higher levels of pain at baseline. CLINICAL RELEVANCE: By reducing burst duration and therefore the pathological load on the masticatory apparatus, the BFB splint reduces TMD and bruxism-related symptoms and improves patients' physical well-being. In the long term, this could prevent damage to the TMJ. This study confirms the effectiveness and safety of this splint. THE UNIVERSAL TRIAL NUMBER: U1111-1239-2450 DRKS-ID REGISTRATION: DRKS00018092.


Assuntos
Bruxismo , Bruxismo do Sono , Biorretroalimentação Psicológica , Dor Facial/terapia , Humanos , Placas Oclusais , Bruxismo do Sono/terapia , Contenções
19.
Clin Oral Investig ; 24(12): 4511-4518, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32436159

RESUMO

OBJECTIVES: To evaluate the influence of intraoral scanning on the quality of preparations for all-ceramic single crowns. MATERIAL AND METHODS: A total of 690 randomly selected and anonymized in vivo single crown preparations were examined. Three hundred twenty-three preparations were directly recorded with an intraoral scanner (group IS). Data from plaster casts digitized by a laboratory scanner (group ID; N = 367) served as control. Comparisons included convergence angle, marginal design, marginal substance reduction, homogeneity of the finish line, and undercuts. Evaluation was performed using fully automated specialized software. Data were analyzed applying Kolmogorov-Smirnov, Mann-Whitney U test, and Fisher's exact test. Level of significance was set at p < 0.05. RESULTS: Convergence angle was above optimum in both groups, but significantly larger for group IS (p < 0.001). Marginal design was more ideal in group IS concerning the absence of featheredge design (p < 0.001) and reverse bevel (p = 0.211). Marginal substance reduction was closer to prerequisites for all-ceramic restorations in group IS (p < 0.001). Finish lines were more homogeneous in group IS regarding the uniformity of their course (p < 0.001). Undercuts were more frequently found in group ID than in group IS (p < 0.001). CONCLUSIONS: Intraoral scanning of prepared teeth has positive impact on the quality of preparations for all-ceramic single crowns regarding marginal substance reduction, marginal design, homogeneity of the finish line, and undercuts. CLINICAL RELEVANCE: Accurate preparation design represents a fundamental condition for success of ceramic crowns. Since there is potential for optimization, intraoral scanning might enhance preparation quality providing instant visual feedback.


Assuntos
Adaptação Marginal Dentária , Planejamento de Prótese Dentária , Cerâmica , Desenho Assistido por Computador , Coroas , Porcelana Dentária
20.
Sensors (Basel) ; 20(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957685

RESUMO

Increasing the length of wind turbine blades for maximum energy capture leads to larger loads and forces acting on the blades. In particular, alternate bending due to gravity or nonuniform wind profiles leads to increased loads and imminent fatigue. Therefore, blade monitoring in operation is needed to optimise turbine settings and, consequently, to reduce alternate bending. In our approach, an acceleration model was used to analyse periodically occurring deviations from uniform bending. By using hierarchical clustering, significant bending patterns could be extracted and patterns were analysed with regard to reference data. In a simulation of alternate bending effects, various effects were successfully represented by different bending patterns. A real data experiment with accelerometers mounted at the blade tip of turbine blades demonstrated a clear relation between the rotation frequency and the resulting bending patterns. Additionally, the markedness of bending shapes could be used to assess the amount of alternate bending of the blade in both simulations and experiment.s The results demonstrate that model-based bending shapes provide a strong indication for alternate bending and, consequently, can be used to optimise turbine settings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa