Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(32): 12019-12032, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527154

RESUMO

Many rivers are polluted with macro (>5 mm)- and microplastics (<5 mm). We assess plastic pollution in rivers from crop production and urbanization in 395 Chinese sub-basins. We develop and evaluate an integrated model (MARINA-Plastics model, China-1.0) that considers plastics in crop production (plastic films from mulching and greenhouses, diffuse sources), sewage systems (point sources), and mismanaged solid waste (diffuse source). Model results indicated that 716 kton of plastics entered Chinese rivers in 2015. Macroplastics in rivers account for 85% of the total amount of plastics (in mass). Around 71% of this total plastic is from about one-fifth of the basin area. These sub-basins are located in central and eastern China, and they are densely populated with intensive agricultural activities. Agricultural plastic films contribute 20% to plastics in Chinese rivers. Moreover, 65% of plastics are from mismanaged waste in urban and rural areas. Sewage is responsible for the majority of microplastics in rivers. Our study could support the design of plastic pollution control policies and thus contribute to green development in China and elsewhere.


Assuntos
Plásticos , Poluentes Químicos da Água , Rios , Microplásticos , Esgotos , Poluentes Químicos da Água/análise , Urbanização , Monitoramento Ambiental/métodos , Produção Agrícola , China
2.
New Phytol ; 234(6): 1919-1928, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114015

RESUMO

Both plants and their associated microbiomes can respond strongly to anthropogenic environmental changes. These responses can be both ecological (e.g. a global change affecting plant demography or microbial community composition) and evolutionary (e.g. a global change altering natural selection on plant or microbial populations). As a result, global changes can catalyse eco-evolutionary feedbacks. Here, we take a plant-focused perspective to discuss how microbes mediate plant ecological responses to global change and how these ecological effects can influence plant evolutionary response to global change. We argue that the strong and functionally important relationships between plants and their associated microbes are particularly likely to result in eco-evolutionary feedbacks when perturbed by global changes and discuss how improved understanding of plant-microbe eco-evolutionary dynamics could inform conservation or even agriculture.


Assuntos
Evolução Biológica , Microbiota , Plantas
3.
Sci Total Environ ; 900: 165179, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385505

RESUMO

Intensive agriculture relies on external inputs to reach high productivity and profitability. Plastic mulch, mainly in the form of Low-Density Polyethylene (LDPE), is widely used in agriculture to decrease evaporation, increase soil temperature and prevent weeds. The incomplete removal of LDPE mulch after use causes plastic contamination in agricultural soils. In conventional agriculture, the use of pesticides also leaves residues accumulating in soils. Thus, the objective of this study was to measure plastic and pesticide residues in agricultural soils and their effects on the soil microbiome. For this, we sampled soil (0-10 cm and 10-30 cm) from 18 parcels from 6 vegetable farms in SE Spain. The farms were under either organic or conventional management, where plastic mulch had been used for >25 years. We measured the macro- and micro-light density plastic debris contents, the pesticide residue levels, and a range of physiochemical properties. We also carried out DNA sequencing on the soil fungal and bacterial communities. Plastic debris (>100 µm) was found in all samples with an average number of 2 × 103 particles kg-1 and area of 60 cm2 kg-1. We found 4-10 different pesticide residues in all conventional soils, for an average of 140 µg kg-1. Overall, pesticide content was ∼100 times lower in organic farms. The soil microbiomes were farm-specific and related to different soil physicochemical parameters and contaminants. Regarding contaminants, bacterial communities responded to the total pesticide residues, the fungicide Azoxystrobin and the insecticide Chlorantraniliprole as well as the plastic area. The fungicide Boscalid was the only contaminant to influence the fungal community. The wide spread of plastic and pesticide residues in agricultural soil and their effects on soil microbial communities may impact crop production and other environmental services. More studies are required to evaluate the total costs of intensive agriculture.


Assuntos
Fungicidas Industriais , Microbiota , Resíduos de Praguicidas , Praguicidas , Solo/química , Resíduos de Praguicidas/análise , Verduras , Polietileno , Agricultura , Praguicidas/análise
4.
Sci Total Environ ; 755(Pt 1): 142653, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33069476

RESUMO

One of the main sources of plastic pollution in agricultural fields is the plastic mulch used by farmers to improve crop production. The plastic mulch is often not removed completely from the fields after harvest. Over time, the plastic mulch that is left of the fields is broken down into smaller particles which are dispersed by the wind or runoff. In the Region of Murcia in Spain, plastic mulch is heavily used for intensive vegetable farming. After harvest, sheep are released into the fields to graze on the vegetable residues. The objective of the study was to assess the plastic contamination in agricultural soil in Spain and the ingestion of plastic by sheep. Therefore, three research questions were established: i) What is the plastic content in agricultural soils where plastic mulch is commonly used? ii) Do livestock ingest the microplastics found in the soil? iii) How much plastic could be transported by the livestock? To answer these questions, we sampled top soils (0-10 cm) from 6 vegetable fields and collected sheep faeces from 5 different herds. The microplastic content was measured using density separation and visual identification. We found ~2 × 103 particles∙kg-1 in the soil and ~103 particles∙kg-1 in the faeces. The data show that plastic particles were present in the soil and that livestock ingested them. After ingesting plastic from one field, the sheep can become a source of microplastic contamination as they graze on other farms or grasslands. The potential transport of microplastics due to a herd of 1000 sheep was estimated to be ~106 particles∙ha-1∙y-1. Further studies should focus on: assessing how much of the plastic found in faeces comes directly from plastic mulching, estimating the plastic degradation in the guts of sheep and understanding the potential effects of these plastic residues on the health of livestock.


Assuntos
Plásticos , Solo , Agricultura , Animais , Fazendas , Fezes , Microplásticos , Ovinos , Espanha , Verduras
5.
Environ Pollut ; 278: 116827, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744785

RESUMO

Considering that pesticides have been used in Europe for over 70 years, a system for monitoring pesticide residues in EU soils and their effects on soil health is long overdue. In an attempt to address this problem, we tested 340 EU agricultural topsoil samples for multiple pesticide residues. These samples originated from 4 representative EU case study sites (CSS), which covered 3 countries and four of the main EU crops: vegetable and orange production in Spain (S-V and S-O, respectively), grape production in Portugal (P-G), and potato production in the Netherlands (N-P). Soil samples were collected between 2015 and 2018 after harvest or before the start of the growing season, depending on the CSS. Conventional and organic farming results were compared in S-V, S-O and N-P. Soils from conventional farms presented mostly mixtures of pesticide residues, with a maximum of 16 residues/sample. Soils from organic farms had significantly fewer residues, with a maximum of 5 residues/sample. The residues with the highest frequency of detection and the highest content in soil were herbicides: glyphosate and its main metabolite AMPA (P-G, N-P, S-O), and pendimethalin (S-V). Total residue content in soil reached values of 0.8 mg kg-1 for S-V, 2 mg kg-1 for S-O and N-P, and 12 mg kg-1 for P-G. Organic soils presented 70-90% lower residue concentrations than the corresponding conventional soils. There is a severe knowledge gap concerning the effects of the accumulated and complex mixtures of pesticide residues found in soil on soil biota and soil health. Safety benchmarks should be defined and introduced into (soil) legislation as soon as possible. Furthermore, the process of transitioning to organic farming should take into consideration the residue mixtures at the conversion time and their residence time in soil.


Assuntos
Resíduos de Praguicidas , Poluentes do Solo , Agricultura , Europa (Continente) , Países Baixos , Agricultura Orgânica , Resíduos de Praguicidas/análise , Portugal , Solo , Poluentes do Solo/análise , Espanha
6.
PeerJ ; 8: e9876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005488

RESUMO

BACKGROUND: In semi-arid regions, the use of plastic mulch and pesticides in conventional agriculture is nearly ubiquitous. Although the sorption of pesticides on Low Density Polyethylene (LDPE) has been previously studied, no data are available for other plastics such as Pro-oxidant Additive Containing (PAC) plastics or "biodegradable" (Bio) plastics. The aim of this research was to measure the sorption pattern of active substances from pesticides on LDPE, PAC and Bio plastic mulches and to compare the decay of the active substances in the presence and absence of plastic debris. METHODS: For this purpose, 38 active substances from 17 insecticides, 15 fungicides and six herbicides commonly applied with plastic mulching in South-east Spain were incubated with a 3 × 3 cm2 piece of plastic mulch (LDPE, PAC and Bio). The incubation was done in a solution of 10% acetonitrile and 90% distilled water at 35 °C for 15 days in the dark. The Quick Easy Cheap Effective Rugged Safe approach was adapted to extract the pesticides. RESULTS: The sorption behavior depended on both the pesticide and the plastic mulch type. On average, the sorption percentage was ~23% on LDPE and PAC and ~50% on Bio. The decay of active substances in the presence of plastic was ~30% lesser than the decay of active substances in solution alone. This study is the first attempt at assessing the behavior of a diversity of plastic mulches and pesticides to further define research needs.

7.
Environ Pollut ; 266(Pt 3): 115097, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32629308

RESUMO

The plastic mulch films used in agriculture are considered to be a major source of the plastic residues found in soil. Mulching with low-density polyethylene (LDPE) is widely practiced and the resulting macro- and microscopic plastic residues in agricultural soil have aroused concerns for years. Over the past decades, a variety of biodegradable (Bio) plastics have been developed in the hope of reducing plastic contamination of the terrestrial ecosystem. However, the impact of these Bio plastics in agroecosystems have not been sufficiently studied. Therefore, we investigated the impact of macro (around 5 mm) and micro (<1 mm) sized plastic debris from LDPE and one type of starch-based Bio mulch film on soil physicochemical and hydrological properties. We used environmentally relevant concentrations of plastics, ranging from 0 to 2% (w/w), identified by field studies and literature review. We studied the effects of the plastic residue on a sandy soil for one month in a laboratory experiment. The bulk density, porosity, saturated hydraulic conductivity, field capacity and soil water repellency were altered significantly in the presence of the four kinds of plastic debris, while pH, electrical conductivity and aggregate stability were not substantially affected. Overall, our research provides clear experimental evidence that microplastics affect soil properties. The type, size and content of plastic debris as well as the interactions between these three factors played complex roles in the variations of the measured soil parameters. Living in a plastic era, it is crucial to conduct further interdisciplinary studies in order to have a comprehensive understanding of plastic debris in soil and agroecosystems.


Assuntos
Poluentes do Solo , Solo , Agricultura , Ecossistema , Hidrologia , Plásticos
8.
Sci Total Environ ; 645: 1048-1056, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30248830

RESUMO

Plastic residues have become a serious environmental problem in the regions with intensive use of plastic mulching. Even though plastic mulch is widely used, the effects of macro- and micro- plastic residues on the soil-plant system and the agroecosystem are largely unknown. In this study, low density polyethylene and one type of starch-based biodegradable plastic mulch film were selected and used as examples of macro- and micro- sized plastic residues. A pot experiment was performed in a climate chamber to determine what effect mixing 1% concentration of residues of these plastics with sandy soil would have on wheat growth in the presence and absence of earthworms. The results showed that macro- and micro- plastic residues affected both above-ground and below-ground parts of the wheat plant during both vegetative and reproductive growth. The type of plastic mulch films used had a strong effect on wheat growth with the biodegradable plastic mulch showing stronger negative effects as compared to polyethylene. The presence of earthworms had an overall positive effect on the wheat growth and chiefly alleviated the impairments made by plastic residues.


Assuntos
Monitoramento Ambiental , Plásticos/análise , Poluentes do Solo , Solo/química , Triticum/efeitos dos fármacos , Agricultura , Animais , Poaceae , Triticum/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa