RESUMO
The antioxidant, antimalarial, antibacterial, and antitumor activities of thiosemicarbazones have made this class of compounds important for medicinal chemists. In addition, thiosemicarbazones are among the most potent and well-known ribonucleotide reductase inhibitors. In this study, 24 new thiosemicarbazone derivatives were synthesized, and the structures and purity of the compounds were determined by IR, 1 H NMR, 13 C NMR, mass spectroscopy, and elemental analysis. The IC50 values of these 24 compounds were determined with an assay for ribonucleotide reductase inhibition. Compounds 19, 20, and 24 inhibited ribonucleotide reductase enzyme activity at a higher level than metisazone as standard. The cytotoxic effects of these compounds were measured on the MCF7 (human breast adenocarcinoma) and HEK293 (human embryonic kidney) cell lines. Similarly, compounds 19, 20, and 24 had a selective effect on the MCF7 and HEK293 cell lines, killing more cancer cells than cisplatin as standard. The compounds (especially 19, 20, and 24 as the most active ones) were then subjected to docking experiments to identify the probable interactions between the ligands and the enzyme active site. The complex formation was shown qualitatively. The ADME (absorption, distribution, metabolism, and excretion) properties of the compounds were analyzed using in-silico techniques.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Tiazóis/farmacologia , Tiossemicarbazonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Ligantes , Células MCF-7 , Estrutura Molecular , Ribonucleotídeo Redutases/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/químicaRESUMO
Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects. Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition. In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC50:0.42â¯nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site.
Assuntos
Aromatase/metabolismo , Inibidores Enzimáticos/química , Tiazóis/química , Aromatase/química , Sítios de Ligação , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Pirimidinas/química , Relação Estrutura-Atividade , Tiazóis/metabolismo , Tiazóis/farmacologiaRESUMO
Drugs used in breast cancer treatments target the suppression of estrogen biosynthesis. During this suppression, the main goal is to inhibit the aromatase enzyme that is responsible for the cyclization and structuring of estrogens either with steroid or non-steroidal-type inhibitors. Non-steroidal derivatives generally have a planar aromatic structure attached to the triazole ring system in their structures, which inhibits hydroxylation reactions during aromatization by coordinating the heme group. Bioisosteric replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase the selectivity for aromatase enzyme inhibition. In this study, pyridine-substituted thiazolylphenol derivatives, which are non-steroidal triazole bioisosteres, were synthesized using the Hantzsch method, and physical analysis and structural determination studies were performed. The IC50 values of the compounds were determined by a fluorescence-based aromatase inhibition assay. Then, their antiproliferative activities on the MCF7 and HEK 293 cell lines were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the crystal structure of human placental aromatase was subjected to a series of docking experiments to identify the possible interactions between the most active structure and the active site. Lastly, an in silico technique was performed to analyze and predict the drug-likeness, molecular and ADME properties of the synthesized molecules.
Assuntos
Antineoplásicos/farmacologia , Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Fenóis/farmacologia , Piridinas/farmacologia , Tiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Piridinas/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/químicaRESUMO
Hit, Lead & Candidate Discovery After acetylcholine is released into the synaptic cleft, it is reabsorbed or deactivated by acetylcholinesterase (AChE). Studies on Alzheimer's disease (AD) in the mid-20th century proved that cognitive dysfunctions are associated with cholinergic neurotransmission. Drugs, such as tacrine, rivastigmine, donepezil, and galantamine are known as acetylcholinesterase inhibitors. However, these drugs have limited use in advanced AD and dementia. Recently, the anticholinesterase activity of various heterocyclic-framed compounds, including piperazine derivatives, has been investigated, and compounds with similar effects to known drugs have been identified. The aim of this study was to design new donepezil analogs. In this study, 66 original piperazinyl thiazole derivatives were synthesized by the reaction of piperazine N'-benzoyl thioamides and bromoacetophenones to inhibit AChE. Biological activity was measured by the Ellman method. Compounds 35, 38, 40, 45, 57, and 61 showed a high inhibitory effect among the series (80.36%-83.94% inhibition), and donepezil had a 96.42% inhibitory effect. The IC50 values of compounds 35, 38, and 40, were calculated as 0.9767 µM, 0.9493 µM, and 0.8023 µM, respectively. Compound 45 (IC50 = 1.122), Compound 57 (IC50 = 1.2130) and 61 (IC50 = 0.9193) also exhibited good activity on AChE. Molecular modeling studies were in agreement with the predictions. Trp286, Arg296, and Tyr341 were the key amino acids at the active site. Both donepezil and synthesized compounds seemed to interact with these residues.
Assuntos
Inibidores da Colinesterase/química , Donepezila/química , Modelos Moleculares , Piperazina/química , Tiazóis/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Humanos , Simulação de Acoplamento Molecular/métodos , Piperazina/farmacologia , Tiazóis/farmacologiaRESUMO
Structurally modified phthalimide derivatives were prepared through condensation of phthalic and tetrafluorophthalic anhydride with selected sulfonamides with variable yields. All compounds were screened for their antimycobacterium activity against Mycobacterium tuberculosis H37Ra (ATCC 25177) using a micro broth dilution technique. The fluorinated derivatives (compounds 2c, 2d, 2f and 2h) had antimycobacterium activity comparable with classical sulfonamide drugs. The minimum inhibitory concentration (MIC) of compounds 2c, 2d, 2f and 2h was greater than that of isoniazid (MIC<0.02 µg/mL) and in vitro activity was greater than that of pyrazinamide, another first line antimycobacterium drug (MIC 50-100 µg/mL). The new compounds could be considered new lead compounds in the treatment of multi-drug resistant tuberculosis.
Assuntos
Antituberculosos/síntese química , Ftalimidas/química , Animais , Antituberculosos/farmacologia , Antituberculosos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Isoniazida/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Ftalimidas/farmacologia , Ftalimidas/toxicidade , Pirazinamida/farmacologiaRESUMO
Novel benzofurane-pyrazolone hybrids have been synthesized for evaluating their anti-inflammatory and cytotoxic properties. 4-(2-chloroacetyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one were reacted with α-hydroxy aldehyde or α-hydroxy ketone derivatives to obtain nine novel pyrazolone derivatives. Structures were successfully elucidated by 1H NMR, 13C NMR, IR and HRMS. Enzyme inhibitory activity was measured on cyclooxygenases (COXs) as considered to address anti-inflammatory activity. Compound 2 showed the highest activity on both COX-1 and COX-2 subtypes with 12.0 µM and 8.0 µM IC50, respectively. This activity was found close to indomethacin COX-2 inhibition measured as 7.4 µM IC50. Rest of the compounds (1, 3-9) showed 10.4-28.1 µM IC50 on COX-2 and 17.0-35.6 µM IC50 on COX-1 (Compound 1 has no activity on COX-1). Tested compounds (1-9) showed activity on NO production. Only compound was the 4, which showed a low inhibition on IL-6 levels. Cell viability was up to 60% at 100 µM for all compounds (1-9) on RAW 264.7 and NIH3T3 cell lines, thus compounds were reported to be noncytotoxic.
Assuntos
Anti-Inflamatórios , Pirazolonas , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Células NIH 3T3 , Pirazóis/química , Pirazóis/farmacologia , Pirazolonas/química , Relação Estrutura-AtividadeRESUMO
In this study, novel 4-(5-((2/3/4-substituted benzyl)thio)-4-(4-substituted phenyl)-4H-1,2,4-triazol-3-yl)-2-(pyridin-3/4-yl)thiazoles were synthesized following a multi-step synthetic procedure. All the compounds were screened with a panel of gram positive/negative bacteria, yeasts, and molds for antimicrobial activity using the disc diffusion method. Then, the minimum inhibitor concentration (MIC) and the minimum bactericidal concentration (MBC) values of active compounds were determined against Micrococcus luteus, Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus using the broth microdilution technique. These compounds were also screened for their inhibitory activities against S. aureus DNA gyrase by supercoiling assay. Furthermore, the crystal structure of S. aureus DNA gyrase B ATPase was subjected to a docking experiment to identify the possible interactions between the most active ligand and the active site. Lastly, the in silico technique was performed to analyze and predict the drug-likeness, molecular and ADME properties of the synthesized molecules.
Assuntos
Anti-Infecciosos , DNA Girase , Antibacterianos/química , Anti-Infecciosos/farmacologia , DNA Girase/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologiaRESUMO
Thiouracil and thiocytosine are important heterocyclic pharmacophores having pharmacological diversity. Antitumor and antiviral activity is commonly associated with thiouracil and thiocytosine derivatives, which are well known fragments for adenosine receptor affinity with many associated pharmacological properties. In this respect, 33 novel compounds have been synthesized in two groups: 24 thiouracil derivatives (4a-x) and 9 thiocytosine derivatives (5a-i). Antitumor activity of all the compounds was determined in the U87 MG glioblastoma cell line. Compound 5e showed an anti-proliferative IC50 of 1.56 µM, which is slightly higher activity than cisplatin (1.67 µM). The 11 most active compounds showed no signficant binding to adenosine A1, A2A or A2B receptors at 1 µM. Brain tumors express high amounts of phosphodiesterases. Compounds were tested for PDE4 inhibition, and 5e and 5f showed the best potency (5e: 3.42 µM; 5f: 0.97 µM). Remakably, those compounds were also the most active against U87MG. However, the compounds lacked a cytotoxic effect on the HEK293 healthy cell line, which encourages further investigation.
Assuntos
Antineoplásicos/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Citosina/farmacologia , Glioblastoma/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Receptores Purinérgicos P1/metabolismo , Tiouracila/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citosina/análogos & derivados , Citosina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Estrutura Molecular , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/química , Relação Estrutura-Atividade , Tiouracila/síntese química , Tiouracila/químicaRESUMO
Heterocyclic compounds with diaryl substituents have been a milestone approach for selective cyclooxygenase 2 (COX 2) inhibition by bioisosteric replacements and modifications. It is also known that thiazole derivatives have different pharmacological activities. In this study, nine novel 2-[(1,5-diphenyl-1H-imidazole-2-yl)thio]-N-(thiazole-2-yl)acetamide derivatives (Compound 1-9) were synthesized via the reaction of 1,5-disubstitued phenyl-imidazole-2-thiole and N-thiazole acetamide. The inhibitory effects of COX-1 and COX-2 enzymes were tested for the synthesized compounds. Enzyme-ligand interactions of the most active compound on COX subtypes were elucidated by molecular modeling studies. The percent inhibitory effect for compound 1, which is the naked derivative among all the compounds, was found to be the most active on COX-2 at 10 µM concentration (C1COX-2: 88%, SC-560COX-2: 98.2%, C1COX-1: 60.9%); whereas compound 9 showed the highest inhibitory effect and was found to be the most selective derivative on COX-1 isoenzyme (C9COX-1: 85%, DuP-697COX-1: 97.2%, C9COX-2: 57.9%).
RESUMO
Expression of N-glycolyl GM3 (NeuGcGM3) ganglioside was detected in the tumor specimens of patients who were on Racotumomab anti-idiotype vaccine maintenance treatment, and prognostic significance as a biomarker was investigated. No statistically significant association was observed in the multivariate analysis between overall survival and tissue NeuGcGM3 IHC levels. Although numerically there was a difference favoring less intense IHC for better prognosis, this did not reach statistical power. However, there was a strong correlation between Racotumomab doses and overall survival (OS). Mean OS of the patient with more than 10 Racotumomab application was significantly longer than the patient who had less than 10 injections (70.7 months vs. 31.1 months, p < 0.001). We propose that, regardless of staining intensity, the presence of NeuGcGM3 in patient tissues might be an indicator of benefit in Racotumomab treatment.
RESUMO
The synthesis and structure determination of 8-aryl /alkyl aryl 1, 3-dimethyl-3, 7-dihydropurin-2, 6-dione derivatives (1-13), was carried out in this study. Bronchodilator activity is investigated using isolated guinea-pig tracheal strips, pre-contracted by acetylcholine and histamine. Spasmolytic activity of the compounds was compared to theophylline. Synthesized compounds (1-13) did not inhibit the acetylcholine-induced pre-contractions except compound (8) at 10(-5) M concentration. In contrast, some of the compounds, especially (7), (11), (12) at 10(-5) M and (3), (4), (9) and (11) in 10(-4) M displayed inhibitory activity on the tracheal strips pre-contracted by histamine. The potency of the compounds at human adenosine receptors was evaluated using radioligand binding assay and a cyclic AMP functional assay in CHO cells expressing these receptors. Compound (11) displayed the greatest activity against radioligand binding of specific agonists to A2A and A2B receptors. The compounds were relatively selective for both A2A and A2B compared with A1 and A3 receptors. All compounds were also tested for the inhibition of NECA-induced cAMP accumulation mediated by the A2B adenosine receptor and compound (11) was found to be the most effective. Our results showed that these compounds are acting as selective adenosine antagonists, especially for adenosine A2B receptors, and are promising as potent anti-inflammatory agents rather than bronchodilator for the treatment of asthma.
Assuntos
Antagonistas do Receptor A2 de Adenosina , Anti-Inflamatórios/farmacologia , Broncodilatadores/farmacologia , Traqueia/efeitos dos fármacos , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Inibidores de Adenilil Ciclases , Animais , Anti-Inflamatórios/síntese química , Ligação Competitiva , Broncodilatadores/síntese química , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Cobaias , Humanos , Técnicas In Vitro , Masculino , Estrutura Molecular , Contração Muscular/efeitos dos fármacos , Purinas/síntese química , Purinas/farmacologia , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Relação Estrutura-Atividade , Traqueia/metabolismo , TransfecçãoRESUMO
Activation of G protein-coupled receptors (GPCRs) is a complex phenomenon. Here, we applied Induced Fit Docking (IFD) in tandem with linear discriminant analysis (LDA) to generate hypotheses on the conformational changes induced to the ß(2)-adrenergic receptor by agonist binding, preliminary to the sequence of events that characterize activation of the receptor. This analysis, corroborated by a follow-up molecular dynamics study, suggested that agonists induce subtle movements to the fifth transmembrane domain (TM5) of the receptor. Furthermore, molecular dynamics also highlighted a correlation between movements of TM5 and the second extracellular loop (EL2), suggesting that freedom of motion of EL2 is required for the agonist-induced TM5 displacement. Importantly, we also showed that the IFD/LDA procedure can be used as a computational means to distinguish agonists from blockers on the basis of the differential conformational changes induced to the receptor. In particular, the two most predictive models obtained are based on the RMSD induced to Ser207 and on the counterclockwise rotation induced to TM5.
Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/química , Domínios e Motivos de Interação entre Proteínas , Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Sítios de Ligação , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Adrenérgicos beta 2/metabolismoRESUMO
G protein-coupled receptors (GPCRs) regulate a wide range of physiological functions and hold great pharmaceutical interest. Using the ß(2)-adrenergic receptor as a case study, this article explores the applicability of docking-based virtual screening to the discovery of GPCR ligands and defines methods intended to improve the screening performance. Our controlled computational experiments were performed on a compound dataset containing known agonists and blockers of the receptor as well as a large number of decoys. The screening based on the structure of the receptor crystallized in complex with its inverse agonist carazolol yielded excellent results, with a clearly delineated prioritization of ligands over decoys. Blockers generally were preferred over agonists; however, agonists were also well distinguished from decoys. A method was devised to increase the screening yields by generating an ensemble of alternative conformations of the receptor that accounts for its flexibility. Moreover, a method was devised to improve the retrieval of agonists, based on the optimization of the receptor around a known agonist. Finally, the applicability of docking-based virtual screening also to homology models endowed with different levels of accuracy was proved. This last point is of uttermost importance, since crystal structures are available only for a limited number of GPCRs, and extends our conclusions to the entire superfamily. The outcome of this analysis definitely supports the application of computer-aided techniques to the discovery of novel GPCR ligands, especially in light of the fact that, in the near future, experimental structures are expected to be solved and become available for an ever increasing number of GPCRs.
Assuntos
Simulação por Computador , Modelos Moleculares , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Agonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/química , Desenho de Fármacos , Ligantes , Estrutura Molecular , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMO
The P2Y(6) receptor is a cytoprotective G-protein-coupled receptor (GPCR) activated by UDP (EC(50) = 0.30 microM). We compared and combined modifications to enhance P2Y(6) receptor agonist selectivity, including ribose ring constraint, 5-iodo and 4-alkyloxyimino modifications, and phosphate modifications such as alpha,beta-methylene and extension of the terminal phosphate group into gamma-esters of UTP analogues. The conformationally constrained (S)-methanocarba-UDP is a full agonist (EC(50) = 0.042 microM). 4-Methoxyimino modification of pyrimidine enhanced P2Y(6), preserved P2Y(2) and P2Y(4), and abolished P2Y(14) receptor potency, in the appropriate nucleotide. N(4)-Benzyloxy-CDP (15, MRS2964) and N(4)-methoxy-Cp(3)U (23, MRS2957) were potent, selective P2Y(6) receptor agonists (EC(50) of 0.026 and 0.012 microM, respectively). A hydrophobic binding region near the nucleobase was explored with receptor modeling and docking. UTP-gamma-aryl and cycloalkyl phosphoesters displayed only intermediate P2Y(6) receptor potency but had enhanced stability in acid and cell membranes. UTP-glucose was inactive, but its (S)-methanocarba analogue and N(4)-methoxycytidine 5'-triphospho-gamma-[1]glucose were active (EC(50) of 2.47 and 0.18 microM, respectively). Thus, the potency, selectivity, and stability of pyrimidine nucleotides as P2Y(6) receptor agonists may be enhanced by modest structural changes.
Assuntos
Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/farmacologia , Ésteres/química , Iminas/química , Polifosfatos/química , Agonistas do Receptor Purinérgico P2 , Pirimidinas/química , Ribonucleotídeos/química , Ribonucleotídeos/farmacologia , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Conformação Proteica , Receptores Purinérgicos P2/química , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
The carboxylic acid group of the anti-inflammatory drug, (S)-2-(6-methoxynaphthalen-2-yl) propanoic acid, naproxen (CAS 22204-53-1) was reacted with the substituted ethylamine derivatives to form (S)-2-(6-methoxynaphthalen-2-yl)-N-substituted ethyl propanamides by using N,N'-dicyclohexyl carbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP). Anti-inflammatory and analgesic activities of the compounds were assessed in vivo by carrageenan-induced hind paw edema and p-benzoquinone induced abdominal contraction tests in mice, respectively. In addition, the ulcerogenic properties of the new compounds were evaluated, and compared to that of naproxen. Among the newly synthesized compounds, compound 2f showed the highest analgesic and antiinflammatory activity at 100 mg/kg oral dose, without inducing any gastric lesion. Although this compound induced less gastric lesions than naproxen, it was found to have less anti-inflammatory and analgesic activity when compared to indometacin (CAS 53-86-1). These new compounds therefore deserve further attention to develop new lead drugs.