Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 153: 106456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442507

RESUMO

Cutaneous damage mechanisms related to dynamic fragment impacts are dependent on the impact angle, impact energy, and fragment characteristics including shape, volume, contact friction, and orientation. Understanding the cutaneous injury mechanism and its relationship to the fragment parameters is lacking compromising damage classification, treatment, and protection. Here we develop a high-fidelity dynamic mechanics-driven model for partial-thickness skin injuries and demonstrate the influence of fragment parameters on the injury mechanism and damage sequence. The model quantitatively predicts the wound shape, area, and depth into the skin layers for selected impact angles, kinetic energy density, and the fragment projectile type including shape and material. The detailed sequence of impact damage including epidermal tearing that occurs ahead of the fragments initial contact location, subsequent stripping of the epidermal/dermal junction, and crushing of the underlying dermis are revealed. We demonstrate that the fragment contact friction with skin plays a key role in redistributing impact energy affecting the extent of epidermal tearing and dermal crushing. Furthermore, projectile edges markedly affect injury severity dependent on the orientation of the edge during initial impact. The model provides a quantitative framework for understanding the detailed mechanisms of cutaneous damage and a basis for the design of protective equipment.


Assuntos
Epiderme , Pele , Humanos , Pele/lesões
2.
Colloids Surf B Biointerfaces ; 231: 113538, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738871

RESUMO

Topical skin formulations often include penetration enhancers that interact with the outer stratum corneum (SC) layer to chemically enhance diffusion. Alternatively, penetration can be mechanically enhanced with simple rubbing in the presence of solid particles sometimes included to exfoliate the top layers of the SC. Our goal was to evaluate micron-sized carbon dioxide bubbles included in a foamed moisturizing formulation as a mechanical penetration enhancement strategy. We show that moisturizing foam bubbles cause an increase in SC formulation penetration using both mechanical and spectroscopic characterization. Our results suggest viscous liquid film drainage between coalescing gaseous bubbles creates local regions of increased hydrodynamic pressure in the foam liquid layer adjacent to the SC surface that enhances treatment penetration. An SC molecular diffusion model is used to rationalize the observed behavior. The findings indicate marked increased levels of treatment concentration in the SC at 2 h and that persists to 18 h after exposure, far exceeding non-foamed treatments. The study suggests an alternate strategy for increasing formulation penetration with a non-chemical mechanism.


Assuntos
Dióxido de Carbono , Absorção Cutânea , Pele/metabolismo , Epiderme/metabolismo , Difusão
3.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892156

RESUMO

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Qualidade de Vida
4.
Adv Mater ; 32(12): e1907030, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072703

RESUMO

Bacterial infections remain a leading threat to global health because of the misuse of antibiotics and the rise in drug-resistant pathogens. Although several strategies such as photothermal therapy and magneto-thermal therapy can suppress bacterial infections, excessive heat often damages host cells and lengthens the healing time. Here, a localized thermal managing strategy, thermal-disrupting interface induced mitigation (TRIM), is reported, to minimize intercellular cohesion loss for accurate antibacterial therapy. The TRIM dressing film is composed of alternative microscale arrangement of heat-responsive hydrogel regions and mechanical support regions, which enables the surface microtopography to have a significant effect on disrupting bacterial colonization upon infrared irradiation. The regulation of the interfacial contact to the attached skin confines the produced heat and minimizes the risk of skin damage during thermoablation. Quantitative mechanobiology studies demonstrate the TRIM dressing film with a critical dimension for surface features plays a critical role in maintaining intercellular cohesion of the epidermis during photothermal therapy. Finally, endowing wound dressing with the TRIM effect via in vivo studies in S. aureus infected mice demonstrates a promising strategy for mitigating the side effects of photothermal therapy against a wide spectrum of bacterial infections, promoting future biointerface design for antibacterial therapy.


Assuntos
Antibacterianos/química , Fototerapia , Infecções Estafilocócicas/terapia , Resinas Acrílicas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bandagens , Ouro/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos da radiação , Hidrogéis/química , Raios Infravermelhos/uso terapêutico , Nanopartículas Metálicas/química , Camundongos , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/veterinária
5.
Biochem Biophys Rep ; 19: 100657, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31211250

RESUMO

The impact of sunscreen formulations on the barrier properties of human skin are often overlooked leading to formulations with components whose effects on barrier mechanical integrity are poorly understood. The aim of this study is to demonstrate the relevance of carrier selection and sunscreen photostability when designing sunscreen formulations to protect the biomechanical barrier properties of human stratum corneum (SC) from solar ultraviolet (UV) damage. Biomechanical properties of SC samples were assayed after accelerated UVB damage through measurements of the SC's mechanical stress profile and corneocyte cohesion. A narrowband UVB (305-315 nm) lamp was used to expose SC samples to 5, 30, 125, and 265 J cm-2 in order to magnify damage to the mechanical properties of the tissue and characterize the UV degradation dose response such that effects from smaller UV dosages can be extrapolated. Stresses in the SC decreased when treated with sunscreen components, highlighting their effect on the skin prior to UV exposure. Stresses increased with UVB exposure and in specimens treated with different sunscreens stresses varied dramatically at high UVB dosages. Specimens treated with sunscreen components without UVB exposure exhibited altered corneocyte cohesion. Both sunscreens studied prevented alteration of corneocyte cohesion by low UVB dosages, but differences in protection were observed at higher UVB dosages indicating UV degradation of one sunscreen. These results indicate the protection of individual sunscreen components vary over a range of UVB dosages, and components can even cause alteration of the biomechanical barrier properties of human SC before UV exposure. Therefore, detailed characterization of sunscreen formulation components is required to design robust protection from UV damage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa