Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7961): 524-528, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198312

RESUMO

As an atom-efficient strategy for the large-scale interconversion of olefins, heterogeneously catalysed olefin metathesis sees commercial applications in the petrochemical, polymer and speciality chemical industries1. Notably, the thermoneutral and highly selective cross-metathesis of ethylene and 2-butenes1 offers an appealing route for the on-purpose production of propylene to address the C3 shortfall caused by using shale gas as a feedstock in steam crackers2,3. However, key mechanistic details have remained ambiguous for decades, hindering process development and adversely affecting economic viability4 relative to other propylene production technologies2,5. Here, from rigorous kinetic measurements and spectroscopic studies of propylene metathesis over model and industrial WOx/SiO2 catalysts, we identify a hitherto unknown dynamic site renewal and decay cycle, mediated by proton transfers involving proximal Brønsted acidic OH groups, which operates concurrently with the classical Chauvin cycle. We show how this cycle can be manipulated using small quantities of promoter olefins to drastically increase steady-state propylene metathesis rates by up to 30-fold at 250 °C with negligible promoter consumption. The increase in activity and considerable reduction of operating temperature requirements were also observed on MoOx/SiO2 catalysts, showing that this strategy is possibly applicable to other reactions and can address major roadblocks associated with industrial metathesis processes.

2.
J Am Chem Soc ; 145(23): 12446-12451, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262018

RESUMO

Generating or even retaining slow magnetic relaxation in surface immobilized single-molecule magnets (SMMs) from promising molecular precursors remains a great challenge. Illustrative examples are organolanthanide compounds that show promising SMM properties in molecular systems, though surface immobilization generally diminishes their magnetic performance. Here, we show how tailored Lewis acidic Al(III) sites on a silica surface enable generation of a material with SMM characteristics via chemisorption of (Cpttt)2DyCl ((Cpttt)- = 1,2,4-tri(tert-butyl)-cyclopentadienide). Detailed studies of this system and its diamagnetic Y analogue indicate that the interaction of the metal chloride with surface Al sites results in a change of the coordination sphere around the metal center inducing for the dysprosium-containing material slow magnetic relaxation up to 51 K with hysteresis up to 8 K and an effective energy barrier (Ueff) of 449 cm-1, the highest reported thus far for a supported SMM.

3.
J Am Chem Soc ; 145(28): 15018-15023, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418311

RESUMO

Although titanosilicalite-1 (TS-1) is among the most successful oxidation catalysts used in industry, its active site structure is still debated. Recent efforts have mostly focused on understanding the role of defect sites and extraframework Ti. Here, we report the 47/49Ti signature of TS-1 and molecular analogues [Ti(OTBOS)4] and [Ti(OTBOS)3(OiPr)] using novel MAS CryoProbe to enhance the sensitivity. While the dehydrated TS-1 displays chemical shifts similar to those of molecular homologues, confirming the tetrahedral environment of Ti consistent with X-ray absorption spectroscopy, it is associated with a distribution of larger quadrupolar coupling constants, indicating an asymmetric environment. Detailed computational studies on cluster models highlights the high sensitivity of the NMR signatures (chemical shift and quadrupolar coupling constant) to small local structural changes. These calculations show that, while it will be difficult to distinguish mono- vs dinuclear sites, the sensitivity of the 47/49Ti NMR signature should enable distinguishing the Ti location among specific T site positions.

4.
J Am Chem Soc ; 145(23): 12651-12662, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256723

RESUMO

The olefin metathesis activity of silica-supported molybdenum oxides depends strongly on metal loading and preparation conditions, indicating that the nature and/or amounts of the active sites vary across compositionally similar catalysts. This is illustrated by comparing Mo-based (pre)catalysts prepared by impregnation (2.5-15.6 wt % Mo) and a model material (2.3 wt % Mo) synthesized via surface organometallic chemistry (SOMC). Analyses of FTIR, UV-vis, and Mo K-edge X-ray absorption spectra show that these (pre)catalysts are composed predominantly of similar isolated Mo dioxo sites. However, they exhibit different reaction properties in both liquid and gas-phase olefin metathesis with the SOMC-derived catalyst outperforming a classical catalyst of a similar Mo loading by ×1.5-2.0. Notably, solid-state 95Mo NMR analyses leveraging state-of-the-art high-field (28.2 T) measurement conditions resolve four distinct surface Mo dioxo sites with distributions that depend on the (pre)catalyst preparation methods. The intensity of a specific deshielded 95Mo NMR signal, which is most prominent in the SOMC-derived catalyst, is linked to reducibility and catalytic activity. First-principles calculations show that 95Mo NMR parameters directly manifest the local strain and coordination environment: acute (SiO-Mo(O)2-OSi) angles and low coordination numbers at Mo lead to highly deshielded 95Mo chemical shifts and small quadrupolar coupling constants, respectively. Natural chemical shift analyses relate the 95Mo NMR signature of strained species to low LUMO energies, which is consistent with their high reducibility and corresponding reactivity. The 95Mo chemical shifts of supported Mo dioxo sites are thus linked to their specific electronic structures, providing a powerful descriptor for their propensity toward reduction and formation of active sites.

5.
Angew Chem Int Ed Engl ; 62(38): e202307814, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37485913

RESUMO

A prototypical material for the oxidative coupling of methane (OCM) is Li/MgO, for which Li is known to be essential as a dopant to obtain high C2 selectivities. Herein, Li/MgO is demonstrated to be an effective catalyst for non-oxidative coupling of methane (NOCM). Moreover, the presence of Li is shown to favor the formation of magnesium acetylide (MgC2 ), while pure MgO promotes coke formation as evidenced by solid-state 13 C NMR, thus indicating that Li promotes C-C bond formation. Metadynamic simulations of the carbon mobility in MgC2 and Li2 C2 at the density functional theory (DFT) level show that carbon easily diffuses as a C2 unit at 1000 °C. These insights suggest that the enhanced C2 selectivity for Li-doped MgO is related to the formation of Li and Mg acetylides.

6.
J Am Chem Soc ; 144(33): 15020-15025, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35969854

RESUMO

The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, X3Mo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that 95Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of 95Mo chemical shift tensors extracted from solid-state 95Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking 95Mo chemical shifts to reactivity. In particular, the 95Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo-O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.


Assuntos
Alcinos , Elementos de Transição , Alcinos/química , Catálise , Ligantes , Espectroscopia de Ressonância Magnética
7.
J Am Chem Soc ; 143(14): 5438-5444, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818083

RESUMO

Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as for applications in quantum computing and spintronics. To date, the most successful SMMs have been organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to the sensitivity of the magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchoring sites not only enable successful immobilization but also lead to a 2 orders of magnitude increase in magnetization relaxation times.

8.
Inorg Chem ; 60(10): 6875-6880, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33475353

RESUMO

The catalytic performances of molecular and silica-supported molybdenum oxo alkylidene species bearing anionic O ligands [ORF9, OTPP, OHMT - where ORF9 = OC(CF3)3, OTPP = 2,3,5,6-tetraphenylphenoxy, OHMT = hexamethylterphenoxy] with different σ-donation abilities and sizes are evaluated in the metathesis of both internal and terminal olefins. Here, we show that the presence of the anionic nonafluoro-tert-butoxy X ligand in Mo(O){═CH-4-(MeO)C6H4}(THF)2{X}2 (1; X = ORF9) significantly increases the catalytic performances in the metathesis of both terminal and internal olefins. Its silica-supported equivalent displays slightly lower activity, albeit with improved stability. In sharp contrast, the molecular complexes with large aryloxy anionic X ligands show little activity, whereas the activity of the corresponding silica-supported systems is greatly improved, illustrating that surface siloxy groups are significantly smaller anionic ligands. Of all of the systems, compound 1 stands out because of its unique high activity for both terminal and internal olefins. Density functional theory modeling indicates that the ORF9 ligand is ideal in this series because of its weak σ-donating ability, avoiding overstabilization of the metallacyclobutane intermediates while keeping low barriers for [2 + 2] cycloaddition and turnstile isomerization.

9.
J Am Chem Soc ; 141(51): 20155-20165, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31751124

RESUMO

Organic structure-directing agents (OSDAs) are exploited in the crystallization of microporous materials to tailor the physicochemical properties of the resulting zeolite for applications ranging from separations to catalysis. The rational design of these OSDAs often entails the identification of molecules with a geometry that is commensurate with the channels and cages of the target zeolite structure. Syntheses tend to employ only a single OSDA, but there are a few examples where two or more organics operate synergistically to yield a desired product. Using a combination of state-of-the-art characterization techniques and molecular modeling, we show that the coupling of N,N,N-trimethyl-1,1-adamantammonium and 1,2-hexanediol, each yielding distinct zeolites when used alone, results in the cooperative direction of a third structure, HOU-4, with the mordenite framework type (MOR). Rietveld refinement using synchrotron X-ray diffraction data reveals the spatial arrangement of the organics in the HOU-4 crystals, with amines located in the large channels and alcohols oriented in the side pockets lining the one-dimensional pores. These results are in excellent agreement with molecular dynamics calculations, which predict similar spatial distributions of organics with an energetically favorable packing density that agrees with experimental measurements of OSDA loading, as well as with solid-state two-dimensional 27Al{29Si}, 27Al{1H}, and 13C{1H} NMR correlation spectra, which establish the proximities and interactions of occluded OSDAs. A combination of high-resolution transmission electron microscopy and atomic force microscopy is used to quantify the size of the HOU-4 crystals, which exhibit a platelike morphology, and to index the crystal facets. Our findings reveal that the combined OSDAs work in tandem to produce ultrathin, nonfaulted HOU-4 crystals that exhibit improved catalytic activity for cumene cracking in comparison to mordenite crystals prepared via conventional syntheses. This novel demonstration of cooperativity highlights the potential possibilities for expanding the use of dual structure-directing agents in zeolite synthesis.

11.
Nat Mater ; 17(4): 341-348, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507417

RESUMO

There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as 'molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2-. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

12.
Langmuir ; 35(48): 15651-15660, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31454249

RESUMO

Dissolution of mineral surfaces at asymmetric solid-liquid-solid interfaces in aqueous solutions occurs in technologically relevant processes, such as chemical/mechanical polishing (CMP) for semiconductor fabrication, formation and corrosion of structural materials, and crystallization of materials relevant to heterogeneous catalysis or drug delivery. In some such processes, materials at confined interfaces exhibit dissolution rates that are orders of magnitude larger than dissolution rates of isolated surfaces. Here, the dissolution of silica and alumina in close proximity to a charged gold surface or mica in alkaline solutions of pH 10-11 is shown to depend on the difference in electrostatic potentials of the surfaces, as determined from measurements conducted using a custom-built electrochemical pressure cell and a surface forces apparatus (SFA). The enhanced dissolution is proposed to result from overlap of the electrostatic double layers between the dissimilar charged surfaces at small intersurface separation distances (<1 Debye length). A semiquantitative model shows that overlap of the electric double layers can change the magnitude and direction of the electric field at the surface with the less negative potential, which results in an increase in the rate of dissolution of that surface. When the surface electrochemical properties were changed, the dissolution rates of silica and alumina were increased by up to 2 orders of magnitude over the dissolution rates of isolated compositionally similar surfaces under otherwise identical conditions. The results provide new insights on dissolution processes that occur at solid-liquid-solid interfaces and yield design criteria for controlling dissolution through electrochemical modification, with relevance to diverse technologies.

13.
Langmuir ; 35(48): 15500-15514, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31362502

RESUMO

Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the surface forces apparatus-the µSFA-that has been designed for ease of use and multimodal capabilities with the retention of the capabilities of other SFA models including accurate measurements of the surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, and biospecific). The small physical size of the µSFA, compared to previous SFA models, makes it portable and suitable for integration into commercially available optical and fluorescence light microscopes, as demonstrated here. The large optical path entry and exit ports make it ideal for concurrent force measurements and spectroscopy studies. Examples of the use of the µSFA in combination with surface plasmon resonance (SPR) and Raman spectroscopy measurements are presented. Because of the short working distance constraints associated with Raman spectroscopy, an interferometric technique was developed and applied to calculate the intersurface separation distance based on Newton's rings. The introduction of the µSFA will mark a transition in SFA usage from primarily physical characterization to concurrent physical characterization with in situ chemical and biological characterization to study interfacial phenomena, including (but not limited to) molecular adsorption, fluid flow dynamics, the determination of surface species and morphology, and (bio)molecular binding kinetics.

14.
Angew Chem Int Ed Engl ; 58(19): 6255-6259, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30912601

RESUMO

The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid-state NMR and synchrotron X-ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al-SSZ-70. Through-covalent-bond 2D 27 Al{29 Si} J-correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large-pore interlayer channels of Al-SSZ-70, while only 6 % are in the sub-nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ-70.

15.
J Am Chem Soc ; 139(46): 16803-16812, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29068208

RESUMO

The structure of the calcined form of the high-silica zeolite SSZ-70 has been elucidated by combining synchrotron X-ray powder diffraction (XRPD), high-resolution transmission electron microscopy (HRTEM), and two-dimensional (2D) dynamic nuclear polarization (DNP)-enhanced NMR techniques. The framework structure of SSZ-70 is a polytype of MWW and can be viewed as a disordered ABC-type stacking of MWW-layers. HRTEM and XRPD simulations show that the stacking sequence is almost random, with each layer being shifted by ±1/3 along the ⟨110⟩ direction with respect to the previous one. However, a small preponderance of ABAB stacking could be discerned. DNP-enhanced 2D 29Si{29Si} J-mediated NMR analyses of calcined Si-SSZ-70 at natural 29Si isotopic abundance (4.7%) establish the through-covalent-bond 29Si-O-29Si connectivities of distinct Si sites in the framework. The DNP-NMR results corroborate the presence of MWW layers and, more importantly, identify two distinct types of Q3 silanol species at the surfaces of the interlayer regions. In the first, an isolated silanol group protrudes into the interlayer space pointing toward the pocket in the adjacent layer. In the second, the surrounding topology is the same, but the isolated -SiOH group is missing, leaving a nest of three Si-O-H groups in place of the three Si-O-Si linkages. The analyses clarify the structure of this complicated material, including features that do not exhibit long-range order. With these insights, the novel catalytic behavior of SSZ-70 can be better understood and opportunities for enhancement recognized.

16.
Angew Chem Int Ed Engl ; 56(19): 5164-5169, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28378529

RESUMO

Mesostructured MFI zeolite nanosheets are established to crystallize non-topotactically through a nanolayered silicate intermediate during hydrothermal synthesis. Solid-state 2D NMR analyses, with sensitivity enhanced by dynamic nuclear polarization (DNP), provide direct evidence of shared covalent 29 Si-O-29 Si bonds between intermediate nanolayered silicate moieties and the crystallizing MFI zeolite nanosheet framework.

17.
J Phys Chem Lett ; 15(7): 1950-1955, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38346175

RESUMO

Polyoxometalates such as ammonium paratungstate (APT) constitute an important class of metal oxides with applications for catalysis, (opto)electronics, and functional materials. Structural analyses of solid polyoxometalates mostly rely on X-ray or neutron diffraction techniques, which are largely limited to compounds that can be isolated with long-range crystallographic order. While 183W NMR has been shown to probe polyoxotungstate structures and dynamics in solution, its application to solids has been extremely limited. Here, state-of-the-art methods for the detection of solid-state 183W NMR spectra are tested and compared for APT in different hydration states. The highly resolved solid-state spectra distinguish each crystallographically distinct site in the tungstate structure. Furthermore, the 183W chemical shifts are shown to be highly sensitive to the local structure, dynamics, and symmetry of APT, establishing solid-state 183W NMR spectroscopy as a potent probe for analysis of polyoxotungstates and other tungsten-derived materials to complement solution NMR and diffraction-based techniques.

18.
Chem Sci ; 14(9): 2361-2368, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36873845

RESUMO

The Union Carbide (UC) ethylene polymerization catalyst, based on silica-supported chromocene, is one of the first industrial catalysts prepared by surface organometallic chemistry, though the structure of the surface sites remains elusive. Recently, our group reported that monomeric and dimeric Cr(ii) sites, as well as Cr(iii) hydride sites, are present and that their proportion varies as a function of the Cr loading. While 1H chemical shifts extracted from solid-state 1H NMR spectra should be diagnostic of the structure of such surface sites, unpaired electrons centered on Cr atoms induce large paramagnetic 1H shifts that complicate their NMR analysis. Here, we implement a cost-efficient DFT methodology to calculate 1H chemical shifts for antiferromagnetically coupled metal dimeric sites using a Boltzmann-averaged Fermi contact term over the population of the different spin states. This method allowed us to assign the 1H chemical shifts observed for the industrial-like UC catalyst. The presence of monomeric and dimeric Cr(ii) sites, as well as a dimeric Cr(iii)-hydride sites, was confirmed and their structure was clarified.

19.
JACS Au ; 2(3): 777-786, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35373213

RESUMO

Molecularly defined and classical heterogeneous Mo-based metathesis catalysts are shown to display distinct and unexpected reactivity patterns for the metathesis of long-chain α-olefins at low temperatures (<100 °C). Catalysts based on supported Mo oxo species, whether prepared via wet impregnation or surface organometallic chemistry (SOMC), exhibit strong activity dependencies on the α-olefin chain length, with slower reaction rates for longer substrate chain lengths. In contrast, molecular and supported Mo alkylidenes are highly active and do not display such dramatic dependence on the chain length. State-of-the-art two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) spectroscopy analyses of postmetathesis catalysts, complemented by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamics calculations, evidence that the activity decrease observed for supported Mo oxo catalysts relates to the strong adsorption of internal olefin metathesis products because of interactions with surface Si-OH groups. Overall, this study shows that in addition to the nature and the number of active sites, the metathesis rates and the overall catalytic performance depend on product desorption, even in the liquid phase with nonpolar substrates. This study further highlights the role of the support and active site composition and dynamics on activity as well as the need for considering adsorption in catalyst design.

20.
JACS Au ; 2(11): 2460-2465, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465533

RESUMO

Advances in solid-state nuclear magnetic resonance (NMR) methods and hardware offer expanding opportunities for analysis of materials, interfaces, and surfaces. Here, we demonstrate the application of a very high magnetic field strength of 28.2 T and fast magic-angle-spinning rates (MAS, >40 kHz) to surface species relevant to catalysis. Specifically, we present as case studies the 1D and 2D solid-state NMR spectra of important catalyst and support materials, ranging from a well-defined silica-supported organometallic catalyst to dehydroxylated γ-alumina and zeolite solid acids. The high field and fast-MAS measurement conditions substantially improve spectral resolution and narrow NMR signals, which is particularly beneficial for solid-state 1D and 2D NMR analysis of 1H and quadrupolar nuclei such as 27Al at surfaces.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa