Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
For Ecol Manage ; 528: 120628, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36650887

RESUMO

Norway spruce is a major industrial tree species in Fennoscandia and future productivity of the species must be secured by matching the variation in adaptation of the species with suitable sites for optimized performance. An appropriate transfer model for forest reproductive material (FRM) is crucial for regeneration of productive forests in the changing climatic conditions that are predicted to occur in Fennoscandia. We have developed a transfer model for prediction of height of Norway spruce in Norway, Sweden, and Finland, using data acquired from 438 progeny and provenance trials with 1919 genetic entries of local and transferred origins. Transfer of genetic material at a given site was expressed in terms of the difference in daylength (photoperiod) between the site and its origin. This variable best reflected the nonlinear response to transfer that has been commonly reported in previous studies. Apart from the transfer variable, the height prediction model included the age of material when height measurements were acquired, annual temperature sum over 5 °C, precipitation during the vegetation period, and interaction terms between test site and transfer variables. The results show that long northward transfers (4-5° latitude) seem to be optimal for relatively mild sites in southern parts of the countries where growing season is longer, and shorter northward transfers (2-4° latitude) for harsher northern sites with shorter growing seasons. The transfer model also predicts that southward transfers of Norway spruce would result in height growth reductions. The developed model provides foundations for development of common or national recommendations for genetically improving Norway spruce material in Fennoscandia.

2.
New Phytol ; 236(5): 1976-1987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093739

RESUMO

Vast population movements induced by recurrent climatic cycles have shaped the genetic structure of plant species. During glacial periods species were confined to low-latitude refugia from which they recolonized higher latitudes as the climate improved. This multipronged recolonization led to many lineages that later met and formed large contact zones. We utilize genomic data from 5000 Picea abies trees to test for the presence of natural selection during recolonization and establishment of a contact zone in Scandinavia. Scandinavian P. abies is today made up of a southern genetic cluster originating from the Baltics, and a northern one originating from Northern Russia. The contact zone delineating them closely matches the limit between two major climatic regions. We show that natural selection contributed to its establishment and maintenance. First, an isolation-with-migration model with genome-wide linked selection fits the data better than a purely neutral one. Second, many loci show signatures of selection or are associated with environmental variables. These loci, regrouped in clusters on chromosomes, are often related to phenology. Altogether, our results illustrate how climatic cycles, recolonization and selection can establish strong local adaptation along contact zones and affect the genetic architecture of adaptive traits.


Assuntos
Abies , Seleção Genética , Árvores , Fenótipo , Demografia , Variação Genética
3.
Evol Appl ; 12(10): 1946-1959, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31700537

RESUMO

Norway spruce (Picea abies) is a dominant conifer species of major economic importance in northern Europe. Extensive breeding programs were established to improve phenotypic traits of economic interest. In southern Sweden, seeds used to create progeny tests were collected on about 3,000 trees of outstanding phenotype ('plus' trees) across the region. In a companion paper, we showed that some were of local origin but many were recent introductions from the rest of the natural range. The mixed origin of the trees together with partial sequencing of the exome of >1,500 of these trees and phenotypic data retrieved from the Swedish breeding program offered a unique opportunity to dissect the genetic basis of local adaptation of three quantitative traits (height, diameter and bud-burst) and assess the potential of assisted gene flow. Through a combination of multivariate analyses and genome-wide association studies, we showed that there was a very strong effect of geographical origin on growth (height and diameter) and phenology (bud-burst) with trees from southern origins outperforming local provenances. Association studies revealed that growth traits were highly polygenic and bud-burst somewhat less. Hence, our results suggest that assisted gene flow and genomic selection approaches could help to alleviate the effect of climate change on P. abies breeding programs in Sweden.

4.
Evol Appl ; 12(8): 1539-1551, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31462913

RESUMO

Primeval forests are today exceedingly rare in Europe, and transfer of forest reproductive material for afforestation and improvement has been very common, especially over the last two centuries. This can be a serious impediment when inferring past population movements in response to past climate changes such as the last glacial maximum (LGM), some 18,000 years ago. In the present study, we genotyped 1,672 individuals from three Picea species (P. abies, P. obovata, and P. omorika) at 400K SNPs using exome capture to infer the past demographic history of Norway spruce (P. abies) and estimate the amount of recent introduction used to establish the Norway spruce breeding program in southern Sweden. Most of these trees belong to P. abies and originate from the base populations of the Swedish breeding program. Others originate from populations across the natural ranges of the three species. Of the 1,499 individuals stemming from the breeding program, a large proportion corresponds to recent introductions from mainland Europe. The split of P. omorika occurred 23 million years ago (mya), while the divergence between P. obovata and P. abies began 17.6 mya. Demographic inferences retrieved the same main clusters within P. abies than previous studies, that is, a vast northern domain ranging from Norway to central Russia, where the species is progressively replaced by Siberian spruce (P. obovata) and two smaller domains, an Alpine domain and a Carpathian one, but also revealed further subdivision and gene flow among clusters. The three main domains divergence was ancient (15 mya), and all three went through a bottleneck corresponding to the LGM. Approximately 17% of P. abies Nordic domain migrated from P. obovata ~103K years ago, when both species had much larger effective population sizes. Our analysis of genomewide polymorphism data thus revealed the complex demographic history of Picea genus in Western Europe and highlighted the importance of material transfer in Swedish breeding program.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa