Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nature ; 549(7670): 82-85, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28854164

RESUMO

Studies on the distribution and evolution of organisms on oceanic islands have advanced towards a dynamic perspective, where terrestrial endemicity results from island geographical aspects and geological history intertwined with sea-level fluctuations. Diversification on these islands may follow neutral models, decreasing over time as niches are filled, or disequilibrium states and progression rules, where richness and endemism rise with the age of the archipelago owing to the splitting of ancestral lineages (cladogenesis). However, marine organisms have received comparatively little scientific attention. Therefore, island and seamount evolutionary processes in the aquatic environment remain unclear. Here we analyse the evolutionary history of reef fishes that are endemic to a volcanic ridge of seamounts and islands to understand their relations to island evolution and sea-level fluctuations. We also test how this evolutionary history fits island biogeography theory. We found that most endemic species have evolved recently (Pleistocene epoch), during a period of recurrent sea-level changes and intermittent connectivity caused by repeated aerial exposure of seamounts, a finding that is consistent with an ephemeral ecological speciation process. Similar to findings for terrestrial biodiversity, our data suggest that the marine speciation rate on islands is negatively correlated with immigration rate. However, because marine species disperse better than terrestrial species, most niches are filled by immigration: speciation increases with the random accumulation of species with low dispersal ability, with few opportunities for in situ cladogenesis and adaptive radiation. Moreover, we confirm that sea-level fluctuations and seamount location play a critical role in marine evolution, mainly by intermittently providing stepping stones for island colonization.


Assuntos
Organismos Aquáticos/isolamento & purificação , Biodiversidade , Peixes/fisiologia , Ilhas , Filogeografia , Animais , Organismos Aquáticos/fisiologia , Oceano Atlântico , Evolução Biológica , Brasil , Recifes de Corais
2.
J Hered ; 114(4): 404-409, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36790952

RESUMO

The surfperches (family Embiotocidae) are a unique group of mostly marine fishes whose phylogenetic position within the Ovalentaria clade (Percomorpha) is still unresolved. As a result of their viviparity and lack of a dispersive larval stage, surfperches are an excellent model for the study of speciation, gene flow, and local adaptation in the ocean. They are also the target of an immensely popular recreational fishery. Very few high-quality molecular resources, however, are available for this group and only for a single species. Here, we describe a highly complete reference genome for the kelp surfperch, Brachyistius frenatus, assembled using a combination of short-read (Illumina, ~47× coverage) and long-read (Oxford Nanopore Technologies, ~27× coverage) sequencing. The 596 Mb assembly has a completeness level of 98.1% (BUSCO), a contig N50 of 2.6 Mb (n = 56), and a contig N90 of 406.6 kb (n = 293). Comparative analysis revealed a high level of synteny between B. frenatus and its close relative, Embiotoca jacksoni. This assembly will serve as a valuable molecular resource upon which future evolutionary dynamics research will build, such as the investigation of local adaptation and the genomic potential for climate adaptation in wild populations.


Assuntos
Kelp , Perciformes , Animais , Kelp/genética , Filogenia , Larva/genética , Genoma , Perciformes/genética , Peixes/genética
3.
J Hered ; 114(1): 60-67, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36107748

RESUMO

Sculpins (Family Cottidae) are generally cold-temperate intertidal reef fishes most commonly found in the North Pacific. As part of the California Conservation Genomics Project (CCGP), we sequenced the genome of the Woolly Sculpin, Clinocottus analis, to establish a genomic model for understanding phylogeographic structure of inshore marine taxa along the California coast. These patterns, in turn, should further inform the design of marine protected areas using dispersal models based on genomic data. The small genome of C. analis is typical of marine fishes at less than 1 Gb (genome size = 538 Mb), and our assembly is near-chromosome level (contig N50 = 9.1 Mb, scaffold N50 = 21 Mb, BUSCO completeness = 97.9%). Within the context of the CCGP, the Woolly Sculpin genome will be used as a reference for future whole-genome resequencing projects aimed at enhancing our knowledge of the population structure of the species, and efficacy of marine protected areas across the state.


Assuntos
Perciformes , Animais , Perciformes/genética , Genômica , Peixes/genética , Análise de Sequência de DNA , Tamanho do Genoma , Cromossomos
4.
J Hered ; 114(1): 52-59, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321765

RESUMO

Pricklebacks (Family Stichaeidae) are generally cold-temperate fishes most commonly found in the north Pacific. As part of the California Conservation Genomics Project (CCGP), we sequenced the genome of the Monkeyface Prickleback, Cebidichthys violaceus, to establish a genomic model for understanding phylogeographic patterns of marine organisms in California. These patterns, in turn, may inform the design of marine protected areas using dispersal models based on forthcoming population genomic data. The genome of C. violaceus is typical of many marine fishes at less than 1 Gb (genome size = 575.6 Mb), and our assembly is near-chromosome level (contig N50 = 1 Mb, scaffold N50 = 16.4 Mb, BUSCO completeness = 93.2%). Within the context of the CCGP, the genome will be used as a reference for future whole genome resequencing projects, enhancing our knowledge of the population structure of the species and more generally, the efficacy of marine protected areas as a primary conservation tool across California's marine ecosystems.


Assuntos
Ecossistema , Perciformes , Animais , Genoma , Perciformes/genética , Peixes/genética , Genômica , Cromossomos
5.
Mol Ecol ; 31(18): 4707-4725, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35821657

RESUMO

Acidification-induced changes in neurological function have been documented in several tropical marine fishes. Here, we investigate whether similar patterns of neurological impacts are observed in a temperate Pacific fish that naturally experiences regular and often large shifts in environmental pH/pCO2 . In two laboratory experiments, we tested the effect of acidification, as well as pH/pCO2 variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish, Embiotoca jacksoni. Experiment 1 employed static pH treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable treatments that oscillated around corresponding static treatments with the same mean (target pH = 7.85/7.70) in an eight-day cycle (amplitude ± 0.15). We found that patterns of global gene expression differed across pH level treatments. Additionally, we identified differential expression of specific genes and enrichment of specific gene sets (GSEA) in comparisons of static pH treatments and in comparisons of static and variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2 variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that interindividual variability in gene expression was greater in variable treatments than static treatments. These results provide important confirmation of neurological impacts of acidification in a temperate fish species and, critically, that natural environmental variability may mediate the impacts of ocean acidification.


Assuntos
Perciformes , Água do Mar , Animais , Encéfalo , Dióxido de Carbono , Peixes , Expressão Gênica , Concentração de Íons de Hidrogênio , Oceanos e Mares , Perciformes/genética
6.
J Hered ; 113(6): 649-656, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35778264

RESUMO

Keystone species are known to play a critical role in kelp forest health, including the well-known killer whales, sea otter, sea urchin, kelp trophic cascade in the Aleutian Islands, Alaska, USA. In California, a major player in the regulation of sea urchin abundance, and in turn, the health of kelp forests ecosystems, is a large wrasse, the California Sheephead, Semicossyphus pulcher. We present a reference genome for this ecologically important species that will serve as a key resource for future conservation research of California's inshore marine environment utilizing genomic tools to address changes in life-history traits, dispersal, range shifts, and ecological interactions among members of the kelp forest ecological assemblages. Our genome assembly of S. pulcher has a total length of 0.794 Gb, which is similar to many other marine fishes. The assembly is largely contiguous (N50 = 31.9 Mb) and nearly complete (BUSCO single-copy core gene content = 98.1%). Within the context of the California Conservation Genomics Project (CCGP), the genome of S. pulcher will be used as an important reference resource for ongoing whole genome resequencing efforts of the species.


Assuntos
Kelp , Perciformes , Animais , Kelp/genética , Ecossistema , Cadeia Alimentar , Peixes/genética , Florestas , Ouriços-do-Mar/fisiologia , California
7.
J Hered ; 113(6): 657-664, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35809222

RESUMO

Surfperches (Family Embiotocidae) are viviparous temperate reef fishes that brood their young. This life history trait translates into limited dispersal, strong population structure, and an unusually strong potential for local adaptation in a marine fish. As part of the California Conservation Genomics Project (CCGP), we sequenced the genome of the Black Surfperch, Embiotoca jacksoni, to establish a genomic model for understanding phylogeographic patterns of marine organisms in California. These patterns, in turn, may inform the design of marine protected areas using dispersal models based on genomic data. The genome of E. jacksoni is typical of marine fishes at less than 1Gb (genome size = 635 Mb), and our assembly is near-chromosome level (contig N50 = 6.5Mb, scaffold N50 = 15.5 Mb, BUSCO = 98.1%). Within the context of the CCGP, the genome will be used as a reference for future whole genome resequencing projects aimed at enhancing our knowledge of the population structure of the species, and efficacy of Marine Protected Areas across the state.


Assuntos
Kelp , Perciformes , Animais , Larva , Perciformes/genética , Peixes/genética , Florestas
8.
Mol Phylogenet Evol ; 156: 107021, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248204

RESUMO

Nibblers (family Girellidae) are reef fishes that are mostly distributed in the Indo-Pacific, with one exception: Girella stuebeli, which is found in the Cabo Verde Archipelago, in the Atlantic Ocean. We capitalized on this unusual distribution to study the evolutionary history of the girellids, and determine the relationship between G. stuebeli and the remaining nibbler taxa. Based on thousands of genomic markers (RAD sequences), we identified the closest relatives of G. stuebeli as being a clade of three species endemic to the northwestern Pacific, restricted to the Sea of Japan and vicinity. This clade diverged from G. stuebeli approximately 2.2 Mya. Two alternative potential routes of migration may explain this affinity: a western route, from the Tropical Eastern Pacific and the Tropical Western Atlantic, and an eastern route via the Indian Ocean and Southern Africa. The geological history and oceanography of the regions combined with molecular data presented here, suggest that the eastern route of invasion (via the Indian Ocean and Southern Africa) is a more likely scenario.


Assuntos
Evolução Biológica , Recifes de Corais , Perciformes/fisiologia , Animais , Oceano Atlântico , Cabo Verde , Calibragem , Geografia , Mitocôndrias/genética , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Fatores de Tempo
9.
J Hered ; 111(1): 57-69, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31899502

RESUMO

Studying how isolation can impact population divergence and adaptation in co-distributed species can bring us closer to understanding how landscapes affect biodiversity. The Sargo, Anisotremus davidsonii (Haemulidae), and the Longjaw mudsucker, Gillichthys mirabilis (Gobiidae), offer a notable framework to study such mechanisms as their Pacific populations cross phylogeographic breaks at Point Conception, California, United States, and Punta Eugenia, Mexico, and are separated to those in the Sea of Cortez by the Baja California peninsula. Here, thousands of loci are genotyped from 48 Sargos and 73 mudsuckers using RADseq to characterize overall genomic divergence, and search for common patterns of putatively neutral and non-neutral structure based on outlier loci among populations with hypothesized different levels of isolation. We further search for parallels between population divergence and the total proportion of outliers, outlier FST distribution, and the proportion of outliers matching coding regions in GenBank. Statistically significant differentiation is seen across Point Conception in mudsucker (FST = 0.15), Punta Eugenia in Sargo (FST = 0.02), and on either side of the Baja California peninsula in both species (FST = 0.11 and 0.23, in Sargo and mudsucker, respectively). Each species shows structure using neutral and non-neutral loci. Finally, higher population divergence yields a more even distribution of outliers along their differentiation range but does not always translate into higher outlier proportions or higher rates in which outliers are matched to coding regions. If repeated in similar systems, observed genomic patterns might reveal speciation signatures in diverse networks of population isolation.


Assuntos
Peixes/genética , Especiação Genética , Seleção Genética , Simpatria/genética , Animais , California , México , Oceano Pacífico , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
Mol Ecol ; 28(20): 4680-4691, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31520569

RESUMO

The evolution of parental care opens the door for the evolution of brood parasitic strategies that allow individuals to gain the benefits of parental care without paying the costs. Here we provide the first documentation for alloparental care in coral reef fish and we discuss why these patterns may reflect conspecific and interspecific brood parasitism. Species-specific barcodes revealed the existence of low levels (3.5% of all offspring) of mixed interspecific broods, mostly juvenile Amblyglyphidodon batunai and Pomacentrus smithi damselfish in Altrichthys broods. A separate analysis of conspecific parentage based on microsatellite markers revealed that mixed parentage broods are common in both species, and the genetic patterns are consistent with two different modes of conspecific brood parasitism, although further studies are required to determine the specific mechanisms responsible for these mixed parentage broods. While many broods had offspring from multiple parasites, in many cases a given brood contained only a single foreign offspring, perhaps a consequence of the movement of lone juveniles between nests. In other cases, broods contained large numbers of putative parasitic offspring from the same parents and we propose that these are more likely to be cases where parasitic adults laid a large number of eggs in the host nest than the result of movements of large numbers of offspring from a single brood after hatching. The evidence that these genetic patterns reflect adaptive brood parasitism, as well as possible costs and benefits of parasitism to hosts and parasites, are discussed.


Assuntos
Adoção , Peixes/fisiologia , Comportamento de Nidação/fisiologia , Poder Familiar , Animais , Recifes de Corais , Peixes/classificação , Genótipo
11.
Mol Ecol ; 27(24): 5004-5018, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427085

RESUMO

Genetic diversity is essential for species persistence because it provides the raw material for evolution. For marine organisms, short pelagic larval duration (PLD) and small population size are characteristics generally assumed to associate with low genetic diversity. The ecological diversity of organisms may also affect genetic diversity with an expected corollary that more restricted habitat and dietary requirements could lead to a reduced genetic diversity because of pronounced genetic structuring. Here, we tested whether groups of species with narrower trophic niches displayed lower genetic diversity than those with broader niches. In order to test those predictions, we used different trophic guilds (i.e., groups of species having similar trophic habits) of coral reef damselfishes in Moorea (French Polynesia) for which we determined their genetic diversity using restriction site-associated DNA sequencing (RADseq) and their trophic ecology with stomach contents and stable isotope data. We found that pelagic feeders- the guild picking zooplankton in the water column- exhibited the lowest genetic diversity despite having the longest PLD and the largest population size. This guild had also the lowest variation in habitat characteristics and dietary composition compared to benthic feeders (i.e., those mainly grazing on algae) and the intermediate group (i.e., those feeding on zooplankton, filamentous algae and small benthic invertebrates). Our findings highlight the association between trophic ecology and genetic diversity that should be more commonly investigated in population genetics.


Assuntos
Recifes de Corais , Peixes/genética , Variação Genética , Genética Populacional , Animais , Dieta , Ecologia , Cadeia Alimentar , Conteúdo Gastrointestinal , Larva/crescimento & desenvolvimento , Polinésia , Densidade Demográfica
12.
Mol Ecol ; 25(14): 3384-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27162055

RESUMO

Biological invasions are increasingly creating ecological and economical problems both on land and in aquatic environments. For over a century, the Mediterranean Sea has steadily been invaded by Indian Ocean/Red Sea species (called Lessepsian invaders) via the Suez Canal, with a current estimate of ~450 species. The bluespotted cornetfish, Fistularia commersonii, considered a 'Lessepsian sprinter', entered the Mediterranean in 2000 and by 2007 had spread through the entire basin from Israel to Spain. The situation is unique and interesting both because of its unprecedented rapidity and by the fact that it took this species c. 130 years to immigrate into the Mediterranean. Using genome scans, with restriction site-associated DNA (RAD) sequencing, we evaluated neutral and selected genomic regions for Mediterranean vs. Red Sea cornetfish individuals. We found that few fixed neutral changes were detectable among populations. However, almost half of the genes associated with the 47 outlier loci (potentially under selection) were related to disease resistance and osmoregulation. Due to the short time elapsed from the beginning of the invasion to our sampling, we interpret these changes as signatures of rapid adaptation that may be explained by several mechanisms including preadaptation and strong local selection. Such genomic regions are therefore good candidates to further study their role in invasion success.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Genética Populacional , Smegmamorpha/genética , Animais , Variação Genética , Genótipo , Oceano Índico , Espécies Introduzidas , Mar Mediterrâneo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Mol Ecol ; 25(20): 5203-5211, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27557731

RESUMO

Oceanographic features influence the transport and delivery of marine larvae, and physical retention mechanisms, such as eddies, can enhance self-recruitment (i.e. the return of larvae to their natal population). Knowledge of exact locations of hatching (origin) and settlement (arrival) of larvae of reef animals provides a means to compare observed patterns of self-recruitment 'connectivity' with those expected from water circulation patterns. Using parentage inference based on multiple sampling years in Moorea, French Polynesia, we describe spatial and temporal variation in self-recruitment of the anemonefish Amphiprion chrysopterus, evaluate the consistency of net dispersal distances of self-recruits against the null expectation of passive particle dispersal and test the hypothesis that larvae originating in certain reef habitats (lagoons and passes) would be retained and thus more likely to self-recruit than those originating on the outer (fore) reef. Estimates of known self-recruitment were consistent across the sampling years (~25-27% of sampled recruits). For most (88%) of these self-recruits, the net distance between hatching and settlement locations was within the maximum dispersal distance expected for a neutrally buoyant passive particle based on the longest duration of the larval dispersive phase and the average direction and speed of current flow around Moorea. Furthermore, a parent of a given body size on the outer (fore) reef of Moorea was less likely to produce self-recruits than those in passes. Our findings show that even a simple dispersal model based on net average flow and direction of alongshore currents can provide insight into landscape-scale retention patterns of reef fishes.


Assuntos
Distribuição Animal , Recifes de Corais , Genética Populacional , Perciformes/genética , Animais , Ilhas , Larva , Oceanografia , Polinésia , Análise Espaço-Temporal , Movimentos da Água
14.
Mol Phylogenet Evol ; 98: 84-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26876637

RESUMO

In this study we estimated the timing of speciation events in a group of angelfishes using 1186 RADseq markers corresponding to 94,880 base pairs. The genus Holacanthus comprises seven species, including two clades of Panama trans-Isthmian geminates, which diverged approximately 3-3.5Mya. These clades diversified within the Tropical Eastern Pacific (TEP, three species) and Tropical Western Atlantic (TWA, two species) which our data suggest to have occurred within the past 1.5My in both ocean basins, but may have proceeded via different mechanisms. In the TEP, speciation is likely to have followed a peripatric pathway, while in the TWA, sister species are currently partially sympatric, thus raising the possibility of sympatric speciation. This study highlights the use of RADseq markers for estimating both divergence times and modes of speciation at a 1-3My timescale.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Marcadores Genéticos/genética , Especiação Genética , Filogenia , Animais , Oceano Atlântico , Evolução Molecular , Oceano Pacífico , Panamá , Fatores de Tempo
15.
Mol Phylogenet Evol ; 88: 55-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25858559

RESUMO

The radiation of surfperches (Embiotocidae) in the temperate North Pacific has been suggested to be the product of ecological competition and niche partitioning. Surfperches are a family of viviparous marine fishes, which have been used to study multiple paternity, sperm competition, and population genetics. Phylogenetic inference is essential for interpreting the evolutionary context of embiotocid life history traits and testing alternative scenarios, yet previous studies have yielded phylogenies with low support and incongruent topologies. Here we constructed reduced representation genomic libraries using restriction-site associated DNA (RAD) sequence markers to infer phylogenetic relationships among all genera and 22 out of 24 embiotocid species. Orthologous markers retained across 91% of sampled species, corresponding to 523 loci, yielded trees with the highest support values. Our results support a scenario where embiotocids first diverged into clades associated with sandy and reef habitats during the middle Miocene (13-18Mya) with subsequent invasions of novel habitats in the reef associated clade, and northern range expansion in the Northwest Pacific. The appearance of California kelp forests (Laminariales) in the late Miocene (8-15Mya) correlates with further proliferation in the reef associated clade. In all cases, radiations occurred within specific habitats, a pattern consistent with niche partitioning. We infer fine scale species relationships among surfperches with confidence and corroborate the utility of RAD data for phylogenetic inference in young lineages.


Assuntos
Perciformes/classificação , Filogenia , Animais , Evolução Biológica , Ecossistema , Marcadores Genéticos , Genoma , Perciformes/genética , Mapeamento por Restrição , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 83: 72-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462995

RESUMO

Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders.


Assuntos
Evolução Biológica , Filogenia , Rajidae/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , Fósseis , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA
17.
Oecologia ; 176(1): 285-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25070649

RESUMO

Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.


Assuntos
Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Ecossistema , Peixes/fisiologia , Animais , Modelos Lineares , Polinésia , Estrelas-do-Mar/fisiologia , Fatores de Tempo , Movimentos da Água
18.
Ecol Evol ; 14(3): e11087, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450316

RESUMO

The rate of biological invasions is steadily increasing, with major ecological and economic impacts accounting for billions of dollars in damage as a result. One spectacular example is the western Atlantic invasion by lionfishes. In the Mediterranean Sea, invasions from the Red Sea via the Suez Canal (termed Lessepsian invasions) comprise more than 100 fish species, including a recent invasion by lionfish. In light of the devastating effects of lionfish in the Caribbean Sea, understanding the dynamics of Mediterranean lionfish invasion is crucial. The Lessepsian lionfish invasion started in 2012, and rapidly spread to the central Mediterranean. Here, we used thousands of RAD seq genomic markers to study the population dynamics of this invasion. While we did not find a reduction in genetic diversity between source (Red Sea) and invasive (Mediterranean) populations (i.e., bottleneck effects), we found evidence of population structure within the invasive range in the Mediterranean Sea. We found that loci that are potentially under selection may play an important role in invasion success (in particular, genes involved in osmoregulation and fin spine sizes). Genomic approaches proved powerful in examining the ecological and evolutionary patterns of successful invaders and may be used as tools to understand and potentially mitigate future invasions.

19.
GigaByte ; 2024: gigabyte115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550358

RESUMO

Holacanthus angelfishes are some of the most iconic marine fishes of the Tropical Eastern Pacific (TEP). However, very limited genomic resources currently exist for the genus. In this study we: (i) assembled and annotated the nuclear genome of the King Angelfish (Holacanthus passer), and (ii) examined the demographic history of H. passer in the TEP. We generated 43.8 Gb of ONT and 97.3 Gb Illumina reads representing 75× and 167× coverage, respectively. The final genome assembly size was 583 Mb with a contig N50 of 5.7 Mb, which captured 97.5% of the complete Actinoterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs). Repetitive elements accounted for 5.09% of the genome, and 33,889 protein-coding genes were predicted, of which 22,984 were functionally annotated. Our demographic analysis suggests that population expansions of H. passer occurred prior to the last glacial maximum (LGM) and were more likely shaped by events associated with the closure of the Isthmus of Panama. This result is surprising, given that most rapid population expansions in both freshwater and marine organisms have been reported to occur globally after the LGM. Overall, this annotated genome assembly provides a novel molecular resource to study the evolution of Holacanthus angelfishes, while facilitating research into local adaptation, speciation, and introgression in marine fishes.

20.
BMC Evol Biol ; 13: 88, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23617542

RESUMO

BACKGROUND: Strongylocentrotid sea urchins have a long tradition as model organisms for studying many fundamental processes in biology including fertilization, embryology, development and genome regulation but the phylogenetic relationships of the group remain largely unresolved. Although the differing isolating mechanisms of vicariance and rapidly evolving gamete recognition proteins have been proposed, a stable and robust phylogeny is unavailable. RESULTS: We used a phylogenomic approach with mitochondrial and nuclear genes taking advantage of the whole-genome sequencing of nine species in the group to establish a stable (i.e. concordance in tree topology among multiple lies of evidence) and robust (i.e. high nodal support) phylogenetic hypothesis for the family Strongylocentrotidae. We generated eight draft mitochondrial genome assemblies and obtained 13 complete mitochondrial genes for each species. Consistent with previous studies, mitochondrial sequences failed to provide a reliable phylogeny. In contrast, we obtained a very well-supported phylogeny from 2301 nuclear genes without evidence of positive Darwinian selection both from the majority of most-likely gene trees and the concatenated fourfold degenerate sites: ((P. depressus, (M. nudus, M. franciscanus), (H. pulcherrimus, (S. purpuratus, (S. fragilis, (S. pallidus, (S. droebachiensis, S. intermedius)). This phylogeny was consistent with a single invasion of deep-water environments followed by a holarctic expansion by Strongylocentrotus. Divergence times for each species estimated with reference to the divergence times between the two major clades of the group suggest a correspondence in the timing with the opening of the Bering Strait and the invasion of the holarctic regions. CONCLUSIONS: Nuclear genome data contains phylogenetic signal informative for understanding the evolutionary history of this group. However, mitochondrial genome data does not. Vicariance can explain major patterns observed in the phylogeny. Other isolating mechanisms are appropriate to explore in this system to help explain divergence patterns not well supported by vicariance, such as the effects of rapidly evolving gamete recognition proteins on isolating populations. Our findings of a stable and robust phylogeny, with the increase in mitochondrial and nuclear comparative genomic data, provide a system in which we can enhance our understanding of molecular evolution and adaptation in this group of sea urchins.


Assuntos
Filogenia , Ouriços-do-Mar/classificação , Ouriços-do-Mar/genética , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Especiação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa