Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 38(8): e454-e458, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683971

RESUMO

ABSTRACT: Schram, B, Orr, R, Niederberger, B, Givens, A, Bernards, J, and Kelly, KR. Cardiovascular demand differences between male and female US Marine recruits during progressive loaded hikes. J Strength Cond Res 38(8): e454-e458, 2024-Despite having to carry the same occupational load, female soldiers tend to be lighter than male soldiers. The aim of this study was to determine the differences in cardiovascular load between female and male US Marine recruits during progressive load carriage hikes. United States Marine Corps recruits (565 male recruits; 364 female recruits) completed 6 loaded hikes over 6 weeks (1: 10 kg, 30 minutes; 2: 10 kg, 45 minutes; 3: 15 kg, 30 minutes, 4: 15 kg, 45 minutes; 5: 20 kg, 30 minutes; 6: 20 kg, 45 minutes) during which cardiovascular response was measured. Average heart rate (HRavg), HR maximum (HRmax), and pace were measured via a wrist-worn physiological monitor. Independent sample t -tests were conducted to compare between sexes, with significance set at 0.008 after adjusting for multiple comparisons. The average female recruit had significantly lower body mass (BM) compared with the average male recruit ( p < 0.001) and thus carried a significantly heavier relative load. (10 kg ∼17%, 15 kg ∼25%, 20 kg ∼33%, p < 0.001). There were no significant differences in pace in any hike, and no significant differences were found in HRavg or HRmax when comparing female and male Marines during Hike 1. For female Marines, HRavg was significantly higher compared with male Marines during Hike 2 (+6.5 b·min -1 , p < 0.001) and Hike 3 (+7.4 b·min -1 , p < 0.001), and both HRavg and HRmax were significantly higher in Hike 4 (+11.9 b·min -1 , +8.4 b·min -1 , p < 0.001), Hike 5 (+7.7 b·min -1 , +7.9 b·min -1 , p < 0.001), and Hike 6 (+6.9 b·min -1 , +7.1 b·min -1 , p < 0.001), respectively. Female Marines endured greater cardiovascular demand compared with male Marines during load carriage events when carrying loads greater than 15 kg (∼25% BM).


Assuntos
Frequência Cardíaca , Militares , Humanos , Feminino , Masculino , Adulto Jovem , Frequência Cardíaca/fisiologia , Fatores Sexuais , Suporte de Carga/fisiologia , Estados Unidos , Adulto , Adolescente
2.
J Strength Cond Res ; 37(9): 1761-1769, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235207

RESUMO

ABSTRACT: Jensen, AE, Bernards, JR, Hamilton, JA, Markwald, RR, Kelly, KR, and Biggs, AT. Do not shoot me: potential consequences of force-on-force training modulate the human stress response. J Strength Cond Res 37(9): 1761-1769, 2023-Close-quarters combat (CQC) engagements trigger the "fight-or-flight" response, activating the sympathetic nervous system and hypothalamic-pituitary-adrenal axis in response to perceived threats. However, it has yet to be shown if a force-on-force (FoF) CQC training environment will lead to adaptations in the physiological stress response or performance. United States Marines and Army infantry personnel participated in a 15-day CQC training program. The CQC program focused heavily on FoF training with the use of nonlethal training ammunition (NLTA). Data collections occurred on training days 1 and 15, during a simulated FoF-hostage rescue (HR) scenario and photorealistic target drill. For the FoF-HR, subjects were instructed to clear the shoot house, rescue the hostage, and only shoot hostile threat(s) with NLTA. The photorealistic target drills were similar, but replaced the role players in the FoF-HR with paper targets. Salivary alpha-amylase (sAA) and salivary cortisol were obtained immediately before entering and exiting the shoot house. Time to completion significantly decreased, between days 1 and 15, for both the FoF-HR and the photorealistic drills by 67.7 and 54.4%, respectively ( p < 0.05). Analyses revealed that the change in sAA, nonsignificantly, doubled from day 1 to 15 during FoF-HR ( p > 0.05), whereas the change in sAA decreased during the photorealistic drills across days ( p < 0.05). Cortisol was significantly higher during the FoF-HR in comparison to the photorealistic drills ( p < 0.05). These data suggest that potential consequences of FoF training heighten the stress response in conjunction with enhanced performance.


Assuntos
Hidrocortisona , Sistema Hipotálamo-Hipofisário , Humanos , Sistema Hipófise-Suprarrenal , Saliva , Estresse Psicológico
3.
J Sports Sci Med ; 22(4): 658-666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045749

RESUMO

Wearables are lightweight, portable technology devices that are traditionally used to monitor physical activity and workload as well as basic physiological parameters such as heart rate. However recent advances in monitors have enabled better algorithms for estimation of caloric expenditure from heart rate for use in weight loss as well as sport performance. can be used for estimating energy expenditure and nutritional demand. Recently, the military has adopted the use of personal wearables for utilization in field studies for ecological validity of training. With popularity of use, the need for validation of these devices for caloric estimates is needed to assist in work-rest cycles. Thus the purpose of this effort was to evaluate the Polar Grit X for energy expenditure (EE) for use in military training exercises. Polar Grit X Pro watches were worn by active-duty elite male operators (N = 16; age: 31.7 ± 5.0 years, height: 180.1 ± 6.2 cm, weight: 91.7 ± 9.4 kg). Metrics were measured against indirect calorimetry of a metabolic cart and heart rate via a Polar heart rate monitor chest strap while exercising on a treadmill. Participants each performed five 10-minute bouts of running at a self-selected speed and incline to maintain a heart rate within one of five heart rate zones, as ordered and defined by Polar. Polar Grit X Pro watch had a good to excellent interrater reliability to indirect calorimetry at estimating energy expenditure (ICC = 0.8, 95% CI = 0.61-0.89, F (74,17.3) = 11.76, p < 0.0001) and a fair to good interrater reliability in estimating macronutrient partitioning (ICC = 0.49, 95% CI = 0.3-0.65, F (74,74.54) = 2.98, p < 0.0001). There is a strong relationship between energy expenditure as estimated from the Polar Grit X Pro and measured through indirect calorimetry. The Polar Grit X Pro watch is a suitable tool for estimating energy expenditure in free-living participants in a field setting and at a range of exercise intensities.


Assuntos
Militares , Humanos , Masculino , Adulto , Projetos Piloto , Reprodutibilidade dos Testes , Exercício Físico/fisiologia , Metabolismo Energético/fisiologia
4.
Work ; 77(4): 1391-1399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38552130

RESUMO

BACKGROUND: Load carriage tasks during United States Marine Corps (USMC) recruit training can cause injury. Load carriage conditioning, if optimized, can reduce injury risk. OBJECTIVE: To compare injuries sustained by USMC recruits following participation in either the Original Load Carriage (OLC) program or a Modified Load Carriage (MLC) program. METHODS: Retrospective musculoskeletal injury data were drawn from the USMC San Diego Sports Medicine injury database for recruits completing the OLC (n = 2,363) and MLC (n = 681) programs. Data were expressed as descriptive statistics and a population estimate of the OLC:MLC relative risk ratio (RR) was calculated. RESULTS: The proportion of injuries sustained in the MLC cohort (n = 268; 39% : OLC cohort, n = 1,372 : 58%) was lower, as was the RR (0.68, 95% CI 0.61- 0.75). The leading nature of injury for both cohorts was sprains and strains (OLC n = 396, 29%; MLC n = 66; 25%). Stress reactions were proportionally higher in MLC (n = 17, 6%; OLC n = 4, 0.3%), while stress fractures were proportionately lower (MLC n = 9, 3%; OLC n = 114, 8%). Overuse injuries were lower in MLC (- 7%). The knee, lower leg, ankle, and foot were the top four bodily sites of injuries and the Small Unit Leadership Evaluation (SULE), Crucible, overuse-nonspecific, running, and conditioning hikes were within the top five most common events causing injury. The prevalence rates of moderate severity injury were similar (MLC = 23%; OLC = 24%), although MLC presented both a higher proportion and prevalence of severe injuries (MLC = 6%; OLC = 3%, respectively). CONCLUSION: A periodized load carriage program concurrently increased exposure to load carriage hikes while reducing injuries both during the load carriage hikes and overall.


Assuntos
Transtornos Traumáticos Cumulativos , Militares , Doenças Musculoesqueléticas , Esportes , Entorses e Distensões , Humanos , Estados Unidos/epidemiologia , Estudos Retrospectivos , Transtornos Traumáticos Cumulativos/etiologia , Transtornos Traumáticos Cumulativos/complicações , Doenças Musculoesqueléticas/epidemiologia , Entorses e Distensões/etiologia , Entorses e Distensões/complicações
5.
Work ; 77(4): 1285-1294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489209

RESUMO

BACKGROUND: During periods of high-volume vigorous exercise, United States Marine Corps recruits often experience musculoskeletal injuries. While the program of instruction (POI) for basic training is a defined training volume, the total workload of boot camp, including movements around the base, is unknown. OBJECTIVE: The present study aimed to quantify the daily total workload, energy expenditure, and sleep during basic recruit training at Marine Corps Recruit Depot (MCRD) San Diego. METHODS: Eighty-four male recruits from MCRD San Diego wore wrist wearable physiological monitors to capture their complete workload (mileage from steps), energy expenditure, and sleep throughout the 10-week boot camp. RESULTS: Marine recruits traveled an average of 11.5±3.4 miles per day (M±SD), expended 4105±823 kcal per day, and slept an average of 5 : 48±1 : 06 hours and minutes per night. While the POI designates a total of 46.3 miles of running and hiking, the actual daily average miles yielded approximately 657.6±107.2 miles over the 10-week boot camp. CONCLUSION: Recruit training requires high physical demand and time under tension due to the cumulative volume of movements around base in addition to the POI planned physical training.


Assuntos
Militares , Carga de Trabalho , Humanos , Masculino , Estados Unidos , Exercício Físico , Metabolismo Energético
6.
Nutrients ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049480

RESUMO

Basic training is centered on developing the physical and tactical skills essential to train a recruit into a Marine. The abrupt increase in activity and energy expenditure in young recruits may contribute to high rates of musculoskeletal injuries, to which females are more susceptible. To date, the total workload of United State Marine Corps (USMC) bootcamp is unknown and should include movement around the military base (e.g., to and from dining facilities, training locations, and classrooms). Thus, the purpose of this effort was to quantify workload and caloric expenditure, as well as qualitatively assess the impact of female reproductive health and injury rates in female recruits. Female recruits (n = 79; age: 19.1 ± 0.2 years, weight: 59.6 ± 0.8 kg, height: 161.6 ± 0.7 cm) wore physiological monitors daily throughout 10 weeks of USMC bootcamp. Physical fitness test scores, physiological metrics from wearables, injury data, and menstrual cycle information were obtained. Female recruits on average expended 3096 ± 9 kcal per day, walked 11.0 ± 0.1 miles per day, and slept 5:43 ± 1:06 h:min per night throughout the 10 weeks of bootcamp. About one-third (35%) of female recruits sustained an injury. In a subset of females that were not taking birth control and had previously been menstruating, 85% experienced cycle dysfunction during boot camp. High levels of physical activity and caloric expenditure, coupled with the stress of a new environment and insufficient sleep, may lead to alterations in female reproductive cycles and musculoskeletal injuries in young USMC recruits.


Assuntos
Militares , Doenças Musculoesqueléticas , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Gastos em Saúde , Carga de Trabalho , Exercício Físico , Aptidão Física/fisiologia , Ciclo Menstrual
7.
Front Physiol ; 14: 1165196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293261

RESUMO

Purpose: To evaluate a closed-cell wet-suit for thermal protective capability during extreme cold water exposure at various depths. Methods: Thirteen (n = 13) elite military divers who were tasked with cold-water training, participated in this study. To mimic various depths, the Ocean Simulation Facility (OSF) at the Navy Experimental Diving Unit (NEDU) was pressurized to simulate dive depths of 30, 50, and 75fsw. Water temperature remained at 1.8-2.0°C for all dives. Four divers dove each day and used the MK16 underwater breathing apparatus with gas mixes of either N202 (79:21) or HeO2 (88:12). Mean skin temperature (TSK) (Ramanathan, 1964), core temperature (Tc), hand and foot readings were obtained every 30 min for 30 and 50fsw and every 15 min during the 75fsw dive. Results: TC was significantly reduced across all dives (p = 0.004); however, was preserved above the threshold for hypothermia (post dive Tc = 36.5 ± 0.4). There was no effect of gas mix on TC. TSK significantly decreased (p < 0.001) across all dives independent of depth and gas. Hand and foot temperatures resulted in the termination of three of the dives. There were no significant main effects for depth or gas, but there were significant main effects for time on hand temperature (p < 0.001) and foot temperature (p < 0.001). Conclusion: Core temperature is maintained above threshold for hypothermia. Variatioins in TC and TSK are a function of dive duration independent of depth or gas for a closed-cell wet-suit in cold water at various depths. However, both hand and foot temperatures reached values at which dexterity is compromised.

8.
Front Physiol ; 13: 842612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874531

RESUMO

Introduction: Cold water exposure poses a unique physiological challenge to the human body. Normally, water submersion increases activation of parasympathetic tone to induce bradycardia in order to compensate for hemodynamic shifts and reduce oxygen consumption by peripheral tissues. However, elevated stress, such as that which may occur due to prolonged cold exposure, may shift the sympatho-vagal balance towards sympathetic activation which may potentially negate the dive reflex and impact thermoregulation. Objective: To quantify the acute stress response during prolonged extreme cold water diving and to determine the influence of acute stress on thermoregulation. Materials and Methods: Twenty-one (n = 21) subjects tasked with cold water dive training participated. Divers donned standard diving equipment and fully submerged to a depth of ≈20 feet, in a pool chilled to 4°C, for a 9-h training exercise. Pre- and post-training measures included: core and skin temperature; salivary alpha amylase (AA), cortisol (CORT), osteocalcin (OCN), testosterone (TEST) and dehydroepiandosterone (DHEA); body weight; blood glucose, lactate, and ketones. Results: Core, skin, and extremity temperature decreased (p < 0.001) over the 9-h dive; however, core temperature was maintained above the clinical threshold for hypothermia and was not correlated to body size (p = 0.595). There was a significant increase in AA (p < 0.001) and OCN (p = 0.021) and a significant decrease in TEST (p = 0.003) over the duration of the dive. An indirect correlation between changes in cortisol concentrations and changes in foot temperature (ρ = -0.5,p = 0.042) were observed. There was a significant positive correlation between baseline OCN and change in hand temperature (ρ = 0.66, p = 0.044) and significant indirect correlation between changes in OCN concentrations and changes in hand temperature (ρ = -0.59, p = 0.043). Conclusion: These data suggest that long-duration, cold water diving initiates a stress response-as measurable by salivary stress biomarkers-and that peripheral skin temperature decreases over the course of these dives. Cumulatively, these data suggest that there is a relationship between the acute stress response and peripheral thermoregulation.

9.
Front Physiol ; 12: 674323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658902

RESUMO

Introduction: Extreme environmental conditions induce changes in metabolic rate and substrate use due to thermoregulation. Cold-water full-body submersion for extended periods of time is inevitable for training and missions carried out by Naval Special Warfare divers. Anthropometric, physiologic, and metabolic data have been reported from partial immersion in cold water in non-thermally protected men; data is limited in thermally protected divers in extremely cold water. Thermoregulatory and metabolic demands during prolonged cold-water submersion in Naval Special Warfare divers are unknown. Objective: Assess thermoregulatory and metabolic demands of Naval Special Warfare divers surrounding prolonged cold-water submersion. Materials and Methods: Sixteen active-duty U.S. Navy Sea Air and Land (SEAL) operators tasked with cold-water dive training participated. Divers donned standard military special operations diving equipment and fully submerged to a depth of ∼ 6 m in a pool chilled to 5°C for a 6-h live training exercise. Metabolic measurements were obtained via indirect calorimetry for 10-min pre-dive and 5-min post dive. Heart rate, skin temperature, and core temperature were measured throughout the dive. Results: Core temperature was maintained at the end of the 6-h dive, 36.8 ± 0.4°C and was not correlated to body composition (body fat percentage, lean body mass) or metabolic rate. SEALs were not at risk for non-freezing cold injuries as mean skin temperature was 28.5 ± 1.6°C at end of the 6-h dive. Metabolic rate (kcal/min) was different pre- to post-dive, increasing from 1.9 ± 0.2 kcal/min to 2.8 ± 0.2 kcal/min, p < 0.001, 95% CI [0.8, 1.3], Cohen's d effect size 2.3. Post-dive substrate utilization was 57.5% carbohydrate, 0.40 ± 0.16 g/min, and 42.5% fat, 0.13 ± 0.04 g/min. Conclusion: Wetsuits supported effective thermoprotection in conjunction with increase in thermogenesis during a 6-h full submersion dive in 5°C. Core temperature was preserved with an expected decrease in skin temperature. Sustained cold-water diving resulted in a 53% increase in energy expenditure. While all participants increased thermogenesis, there was high inter-individual variability in metabolic rate and substrate utilization. Variability in metabolic demands may be attributable to individual physiologic adjustments due to prior cold exposure patterns of divers. This suggests that variations in metabolic adjustments and habituation to the cold were likely. More work is needed to fully understand inter-individual metabolic variability to prolonged cold-water submersion.

10.
Front Psychol ; 10: 2964, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993011

RESUMO

Mental skills training (MST) has been suggested to reduce stress in civilian and athletic populations, however, whether these techniques and practices transfer to a military population are unknown. Therefore, the purpose of this study was to evaluate two MST programs against a baseline condition, training-as-usual (TAU), during an intense, active-duty, military training environment. Two hundred and three Marines enrolled in the United States Marine Corps' Basic Reconnaissance Course participated in this effort (n = 203; age = 22.7 ± 3.3 years; height = 178 ± 6.35 cm; weight = 97.7 ± 8.3 kg; Mean ± SD). Each Marine was assigned to one of three groups, Mindfulness-Based Mind Fitness Training (MMFT), General Mental Skills Training (GMST), or TAU. Operational and cognitive performance measures, as well as, physiological metrics were obtained across three training phases (phase 1-3). Furthermore, phase 3 was sub-divided into pre-ambush, ambush and post-ambush time points. Significant group × time interactions were found for the total number of errors committed on the sustained attention response task (p = 0.004); as well as, plasma cortisol (p < 0.0001) and insulin-like growth factor-1 (IGF-1; p < 0.0001). There were mixed results between groups on operational performance tasks with the MST groups tending to perform better than TAU the more time participants had with MST instruction. During ambush, the differences among groups were especially pronounced for measures of information processing that one would expect MST to enhance: coordinates recall, plot time, and plot accuracy (p < 0.001), with improvements ranging from 24.7 to 87.9% for the MST conditions when compared to TAU. These data demonstrate that independent of the specific type of MST program, the fundamental characteristics of stress regulation embedded within each MST program may enhance performance and cognitive function during time of heightened stress.

11.
Int J Sports Physiol Perform ; 14(1): 46-54, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29809061

RESUMO

PURPOSE: To compare repetition maximum (RM) to relative intensity using sets and repetitions (RISR) resistance training on measures of training load, vertical jump, and force production in well-trained lifters. METHODS: Fifteen well-trained (isometric peak force = 4403.61 [664.69] N, mean [SD]) males underwent resistance training 3 d/wk for 10 wk in either an RM group (n = 8) or RISR group (n = 7). Weeks 8 to 10 consisted of a tapering period for both groups. The RM group achieved a relative maximum each day, whereas the RISR group trained based on percentages. Testing at 5 time points included unweighted (<1 kg) and 20-kg squat jumps, countermovement jumps, and isometric midthigh pulls. Mixed-design analyses of variance and effect size using Hedge's g were used to assess within- and between-groups alterations. RESULTS: Moderate between-groups effect sizes were observed for all squat-jump and countermovement-jump conditions supporting the RISR group (g = 0.76-1.07). A small between-groups effect size supported RISR for allometrically scaled isometric peak force (g = 0.20). Large and moderate between-groups effect sizes supported RISR for rate of force development from 0 to 50 ms (g = 1.25) and 0 to 100 ms (g = 0.89). Weekly volume load displacement was not different between groups (P > .05); however, training strain was statistically greater in the RM group (P < .05). CONCLUSIONS: Overall, this study demonstrated that RISR training yielded greater improvements in vertical jump, rate of force development, and maximal strength compared with RM training, which may be explained partly by differences in the imposed training stress and the use of failure/nonfailure training in a well-trained population.

12.
Sports (Basel) ; 7(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373325

RESUMO

The purpose of the study was to compare the physiological responses of skeletal muscle to a resistance training (RT) program using repetition maximum (RM) or relative intensity (RISR). Fifteen well-trained males underwent RT 3 d·wk-1 for 10 weeks in either an RM group (n = 8) or RISR group (n = 7). The RM group achieved a relative maximum each day, while the RISR group trained based on percentages. The RM group exercised until muscular failure on each exercise, while the RISR group did not reach muscular failure throughout the intervention. Percutaneous needle biopsies of the vastus lateralis were obtained pre-post the training intervention, along with ultrasonography measures. Dependent variables were: Fiber type-specific cross-sectional area (CSA); anatomical CSA (ACSA); muscle thickness (MT); mammalian target of rapamycin (mTOR); adenosine monophosphate protein kinase (AMPK); and myosin heavy chains (MHC) specific for type I (MHC1), type IIA (MHC2A), and type IIX (MHC2X). Mixed-design analysis of variance and effect size using Hedge's g were used to assess within- and between-group alterations. RISR statistically increased type I CSA (p = 0.018, g = 0.56), type II CSA (p = 0.012, g = 0.81), ACSA (p = 0.002, g = 0.53), and MT (p < 0.001, g = 1.47). RISR also yielded a significant mTOR reduction (p = 0.031, g = -1.40). Conversely, RM statistically increased only MT (p = 0.003, g = 0.80). Between-group effect sizes supported RISR for type I CSA (g = 0.48), type II CSA (g = 0.50), ACSA (g = 1.03), MT (g = 0.72), MHC2X (g = 0.31), MHC2A (g = 0.87), and MHC1 (g = 0.59); with all other effects being of trivial magnitude (g < 0.20). Our results demonstrated greater adaptations in fiber size, whole-muscle size, and several key contractile proteins when using RISR compared to RM loading paradigms.

13.
Sports (Basel) ; 5(4)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29910447

RESUMO

Current research ideologies in sport science allow for the possibility of investigators producing statistically significant results to help fit the outcome into a predetermined theory. Additionally, under the current Neyman-Pearson statistical structure, some argue that null hypothesis significant testing (NHST) under the frequentist approach is flawed, regardless. For example, a p-value is unable to measure the probability that the studied hypothesis is true, unable to measure the size of an effect or the importance of a result, and unable to provide a good measure of evidence regarding a model or hypothesis. Many of these downfalls are key questions researchers strive to answer following an investigation. Therefore, a shift towards a magnitude-based inference model, and eventually a fully Bayesian framework, is thought to be a better fit from a statistical standpoint and may be an improved way to address biases within the literature. The goal of this article is to shed light on the current research and statistical shortcomings the field of sport science faces today, and offer potential solutions to help guide future research practices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa