Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(5): 2273-2286, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36857721

RESUMO

Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.


Assuntos
Encéfalo , Cognição , Fenômenos do Sistema Imunitário , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Modelos Animais de Doenças , Epigênese Genética , Poli I-C , Camundongos
2.
Transl Psychiatry ; 14(1): 289, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009558

RESUMO

Prenatal exposure to infections is a risk factor for neurodevelopmental disorders in offspring, and alterations in mitochondrial function are discussed as a potential underlying factor. Here, using a mouse model of viral-like maternal immune activation (MIA) based on poly(I:C) (POL) treatment at gestational day (GD) 12, we show that adult offspring exhibit behavioral deficits, such as reduced levels of social interaction. In addition, we found increased nicotinamidadenindinucleotid (NADH)- and succinate-linked mitochondrial respiration and maximal electron transfer capacity in the prefrontal cortex (PFC) and in the amygdala (AMY) of males and females. The increase in respiratory capacity resulted from an increase in mitochondrial mass in neurons (as measured by complex IV activity and transcript expression), presumably to compensate for a reduction in mitochondrion-specific respiration. Moreover, in the PFC of control (CON) male offspring a higher excess capacity compared to females was observed, which was significantly reduced in the POL-exposed male offspring, and, along with a higher leak respiration, resulted in a lower mitochondrial coupling efficiency. Transcript expression of the uncoupling proteins (UCP4 and UCP5) showed a reduction in the PFC of POL male mice, suggesting mitochondrial dysfunction. In addition, in the PFC of CON females, a higher expression of the antioxidant enzyme superoxide dismutase (SOD1) was observed, suggesting a higher antioxidant capacity as compared to males. Finally, transcripts analysis of genes involved in mitochondrial biogenesis and dynamics showed reduced expression of fission/fusion transcripts in PFC of POL offspring of both sexes. In conclusion, we show that MIA causes alterations in neuronal mitochondrial function and mass in the PFC and AMY of adult offspring with some effects differing between males and females.


Assuntos
Mitocôndrias , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Efeitos Tardios da Exposição Pré-Natal/imunologia , Gravidez , Mitocôndrias/metabolismo , Camundongos , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/imunologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Encéfalo/imunologia , Encéfalo/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/imunologia , Comportamento Animal , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa