Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cell ; 159(6): 1300-11, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25480295

RESUMO

Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development.


Assuntos
Andinocilina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , beta-Lactamas/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/enzimologia , Escherichia coli/citologia , Escherichia coli/enzimologia , Glicosídeo Hidrolases/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo
2.
Nature ; 623(7988): 814-819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938784

RESUMO

Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet1-3. The proper assembly of LPS in the outer membrane is required for cell viability and provides Gram-negative bacteria intrinsic resistance to many classes of antibiotics. LPS biosynthesis is completed in the inner membrane, so the LPS must be extracted, moved across the aqueous periplasm that separates the two membranes and translocated through the outer membrane where it assembles on the cell surface4. LPS transport and assembly requires seven conserved and essential LPS transport components5 (LptA-G). This system has been proposed to form a continuous protein bridge that provides a path for LPS to reach the cell surface6,7, but this model has not been validated in living cells. Here, using single-molecule tracking, we show that Lpt protein dynamics are consistent with the bridge model. Half of the inner membrane Lpt proteins exist in a bridge state, and bridges persist for 5-10 s, showing that their organization is highly dynamic. LPS facilitates Lpt bridge formation, suggesting a mechanism by which the production of LPS can be directly coupled to its transport. Finally, the bridge decay kinetics suggest that there may be two different types of bridges, whose stability differs according to the presence (long-lived) or absence (short-lived) of LPS. Together, our data support a model in which LPS is both a substrate and a structural component of dynamic Lpt bridges that promote outer membrane assembly.


Assuntos
Membrana Externa Bacteriana , Proteínas de Transporte , Bactérias Gram-Negativas , Lipopolissacarídeos , Proteínas de Membrana , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
3.
Nature ; 615(7951): 300-304, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859542

RESUMO

Gram-negative bacteria surround their cytoplasmic membrane with a peptidoglycan (PG) cell wall and an outer membrane (OM) with an outer leaflet composed of lipopolysaccharide (LPS)1. This complex envelope presents a formidable barrier to drug entry and is a major determinant of the intrinsic antibiotic resistance of these organisms2. The biogenesis pathways that build the surface are also targets of many of our most effective antibacterial therapies3. Understanding the molecular mechanisms underlying the assembly of the Gram-negative envelope therefore promises to aid the development of new treatments effective against the growing problem of drug-resistant infections. Although the individual pathways for PG and OM synthesis and assembly are well characterized, almost nothing is known about how the biogenesis of these essential surface layers is coordinated. Here we report the discovery of a regulatory interaction between the committed enzymes for the PG and LPS synthesis pathways in the Gram-negative pathogen Pseudomonas aeruginosa. We show that the PG synthesis enzyme MurA interacts directly and specifically with the LPS synthesis enzyme LpxC. Moreover, MurA was shown to stimulate LpxC activity in cells and in a purified system. Our results support a model in which the assembly of the PG and OM layers in many proteobacterial species is coordinated by linking the activities of the committed enzymes in their respective synthesis pathways.


Assuntos
Membrana Externa Bacteriana , Parede Celular , Pseudomonas aeruginosa , Parede Celular/metabolismo , Lipopolissacarídeos/metabolismo , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo
4.
PLoS Genet ; 20(6): e1011127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829907

RESUMO

The cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis. Characterization of pathways that govern envelope biogenesis in these organisms is therefore critical in understanding their biology and for identifying new antibiotic targets. To better understand MM biogenesis, we developed a cell sorting-based screen for mutants defective in the surface exposure of a porin normally embedded in the MM of the model organism Corynebacterium glutamicum. The results revealed a requirement for the conserved σD envelope stress response in porin export and identified MarP as the site-1 protease, respectively, that activate the response by cleaving the membrane-embedded anti-sigma factor. A reporter system revealed that the σD pathway responds to defects in mycolic acid and arabinogalactan biosynthesis, suggesting that the stress response has the unusual property of being induced by activating signals that arise from defects in the assembly of two distinct envelope layers. Our results thus provide new insights into how C. glutamicum and related bacteria monitor envelope integrity and suggest a potential role for members of the σD regulon in protein export to the MM.


Assuntos
Membrana Celular , Parede Celular , Corynebacterium glutamicum , Ácidos Micólicos , Fator sigma , Parede Celular/metabolismo , Parede Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Fator sigma/metabolismo , Fator sigma/genética , Membrana Celular/metabolismo , Estresse Fisiológico , Porinas/metabolismo , Porinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Galactanos/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/metabolismo
5.
Annu Rev Microbiol ; 75: 315-336, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351794

RESUMO

Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms Escherichia coli and Bacillus subtilis.


Assuntos
Proteínas do Citoesqueleto , Peptidoglicano , Bacillus subtilis , Proteínas de Bactérias , Parede Celular
6.
Proc Natl Acad Sci U S A ; 120(35): e2301987120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607228

RESUMO

The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod complex (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod complex. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria.


Assuntos
Parede Celular , Lipopolissacarídeos , Membrana Celular , Citoesqueleto , Ciclo Celular , Escherichia coli/genética , Peptidoglicano
7.
Cell ; 143(7): 1110-20, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21183074

RESUMO

Most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by polysaccharide polymerases called penicillin-binding proteins (PBPs). Because they are the targets of penicillin and related antibiotics, the structure and biochemical functions of the PBPs have been extensively studied. Despite this, we still know surprisingly little about how these enzymes build the PG layer in vivo. Here, we identify the Escherichia coli outer-membrane lipoproteins LpoA and LpoB as essential PBP cofactors. We show that LpoA and LpoB form specific trans-envelope complexes with their cognate PBP and are critical for PBP function in vivo. We further show that LpoB promotes PG synthesis by its partner PBP in vitro and that it likely does so by stimulating glycan chain polymerization. Overall, our results indicate that PBP accessory proteins play a central role in PG biogenesis, and like the PBPs they work with, these factors are attractive targets for antibiotic development.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Parede Celular/enzimologia , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Parede Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
8.
J Bacteriol ; 206(3): e0038423, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38426721

RESUMO

Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as sgl. Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics. Here, we designate these as type I Sgls. In this formalism, the other eight Sgls are assigned to type II, the best-studied of which is protein L of the paradigm F-specific ssRNA phage MS2. Comparisons have suggested that type II Sgls have four sequence elements distinguished by hydrophobic and polar character. Environmental metatranscriptomics has revealed thousands of new ssRNA phage genomes, each of which presumably has an Sgl. Here, we describe methods to distinguish type I and type II Sgls. Using phase contrast microscopy, we show that both classes of Sgls cause the formation of blebs prior to lysis, but the location of the blebs differs significantly. In addition, we show that L and other type II Sgls do not inhibit the net synthesis of PG, as measured by radio-labeling of PG. Finally, we provide direct evidence that the Sgl from Pseudomonas phage PP7 is a type I Sgl, in support of a recent report based on a genetic selection. This shows that the putative four-element sequence structure suggested for L is not a reliable discriminator for the operational characterization of Sgls. IMPORTANCE: The ssRNA phage world has recently undergone a metagenomic expansion upward of a thousandfold. Each genome likely carries at least one single-gene lysis (sgl) cistron encoding a protein that single-handedly induces host autolysis. Here, we initiate an approach to segregate the Sgls into operational types based on physiological analysis, as a first step toward the alluring goal of finding many new ways to induce bacterial death and the attendant expectations for new antibiotic development.


Assuntos
Bacteriófagos , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Bactérias/genética , Antibacterianos/metabolismo , Parede Celular/metabolismo , Metagenômica , RNA/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
9.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635392

RESUMO

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Assuntos
Proteínas de Bactérias , Corynebacterium glutamicum , Proteômica , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Ácidos Micólicos/metabolismo , Ácidos Micólicos/química , Espectrometria de Massas em Tandem , Cromatografia Líquida , Acilação , Química Click
10.
Nature ; 556(7699): 118-121, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590088

RESUMO

The shape, elongation, division and sporulation (SEDS) proteins are a large family of ubiquitous and essential transmembrane enzymes with critical roles in bacterial cell wall biology. The exact function of SEDS proteins was for a long time poorly understood, but recent work has revealed that the prototypical SEDS family member RodA is a peptidoglycan polymerase-a role previously attributed exclusively to members of the penicillin-binding protein family. This discovery has made RodA and other SEDS proteins promising targets for the development of next-generation antibiotics. However, little is known regarding the molecular basis of SEDS activity, and no structural data are available for RodA or any homologue thereof. Here we report the crystal structure of Thermus thermophilus RodA at a resolution of 2.9 Å, determined using evolutionary covariance-based fold prediction to enable molecular replacement. The structure reveals a ten-pass transmembrane fold with large extracellular loops, one of which is partially disordered. The protein contains a highly conserved cavity in the transmembrane domain, reminiscent of ligand-binding sites in transmembrane receptors. Mutagenesis experiments in Bacillus subtilis and Escherichia coli show that perturbation of this cavity abolishes RodA function both in vitro and in vivo, indicating that this cavity is catalytically essential. These results provide a framework for understanding bacterial cell wall synthesis and SEDS protein function.


Assuntos
Cristalografia por Raios X/métodos , Nucleotidiltransferases/química , Peptidoglicano/metabolismo , Thermus thermophilus/enzimologia , Bacillus subtilis/genética , Biocatálise , Parede Celular/enzimologia , Parede Celular/metabolismo , Escherichia coli/genética , Modelos Moleculares , Nucleotidiltransferases/metabolismo , Domínios Proteicos , Dobramento de Proteína , Relação Estrutura-Atividade , Thermus thermophilus/genética
11.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34429361

RESUMO

A cell wall made of the heteropolymer peptidoglycan (PG) surrounds most bacterial cells. This essential surface layer is required to prevent lysis from internal osmotic pressure. The class A penicillin-binding proteins (aPBPs) play key roles in building the PG network. These bifunctional enzymes possess both PG glycosyltransferase (PGT) and transpeptidase (TP) activity to polymerize the wall glycans and cross-link them, respectively. In Escherichia coli and other gram-negative bacteria, aPBP function is dependent on outer membrane lipoproteins. The lipoprotein LpoA activates PBP1a and LpoB promotes PBP1b activity. In a purified system, the major effect of LpoA on PBP1a is TP stimulation. However, the relevance of this activation to the cellular function of LpoA has remained unclear. To better understand why PBP1a requires LpoA for its activity in cells, we identified variants of PBP1a from E. coli and Pseudomonas aeruginosa that function in the absence of the lipoprotein. The changes resulting in LpoA bypass map to the PGT domain and the linker region between the two catalytic domains. Purification of the E. coli variants showed that they are hyperactivated for PGT but not TP activity. Furthermore, in vivo analysis found that LpoA is necessary for the glycan synthesis activity of PBP1a in cells. Thus, our results reveal that LpoA exerts a much greater control over the cellular activity of PBP1a than previously appreciated. It not only modulates PG cross-linking but is also required for its cognate synthase to make PG glycans in the first place.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Parede Celular/enzimologia , Reagentes de Ligações Cruzadas/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Lipoproteínas/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética
12.
Proc Natl Acad Sci U S A ; 117(38): 23879-23885, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907942

RESUMO

Cell division in bacteria is mediated by a multiprotein assembly called the divisome. A major function of this machinery is the synthesis of the peptidoglycan (PG) cell wall that caps the daughter poles and prevents osmotic lysis of the newborn cells. Recent studies have implicated a complex of FtsW and FtsI (FtsWI) as the essential PG synthase within the divisome; however, how PG polymerization by this synthase is regulated and coordinated with other activities within the machinery is not well understood. Previous results have implicated a conserved subcomplex of division proteins composed of FtsQ, FtsL, and FtsB (FtsQLB) in the regulation of FtsWI, but whether these proteins act directly as positive or negative regulators of the synthase has been unclear. To address this question, we purified a five-member Pseudomonas aeruginosa division complex consisting of FtsQLB-FtsWI. The PG polymerase activity of this complex was found to be greatly stimulated relative to FtsWI alone. Purification of complexes lacking individual components indicated that FtsL and FtsB are sufficient for FtsW activation. Furthermore, support for this activity being important for the cellular function of FtsQLB was provided by the identification of two division-defective variants of FtsL that still form normal FtsQLB-FtsWI complexes but fail to activate PG synthesis. Thus, our results indicate that the conserved FtsQLB complex is a direct activator of PG polymerization by the FtsWI synthase and thereby define an essential regulatory step in the process of bacterial cell division.


Assuntos
Proteínas de Bactérias , Proteínas de Ciclo Celular , Parede Celular , Citocinese/fisiologia , Proteínas de Membrana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(12): 6777-6783, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152098

RESUMO

Tol-Pal is a multiprotein system present in the envelope of Gram-negative bacteria. Inactivation of this widely conserved machinery compromises the outer membrane (OM) layer of these organisms, resulting in hypersensitivity to many antibiotics. Mutants in the tol-pal locus fail to complete division and form cell chains. This phenotype along with the localization of Tol-Pal components to the cytokinetic ring in Escherichia coli has led to the proposal that the primary function of the system is to promote OM constriction during division. Accordingly, a poorly constricted OM is believed to link the cell chains formed upon Tol-Pal inactivation. However, we show here that cell chains of E. coli tol-pal mutants are connected by an incompletely processed peptidoglycan (PG) layer. Genetic suppressors of this defect were isolated and found to overproduce OM lipoproteins capable of cleaving the glycan strands of PG. Among the factors promoting cell separation in mutant cells was a protein of previously unknown function (YddW), which we have identified as a divisome-localized glycosyl hydrolase that cleaves peptide-free PG glycans. Overall, our results indicate that the cell chaining defect of Tol-Pal mutants cannot simply be interpreted as a defect in OM constriction. Rather, the complex also appears to be required for the activity of several OM-localized enzymes with cell wall remodeling activity. Thus, the Tol-Pal system may play a more general role in coordinating OM invagination with PG remodeling at the division site than previously appreciated.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Ligação Proteica
14.
Mol Microbiol ; 115(6): 1170-1180, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33278861

RESUMO

Bacterial cells are surrounded by a peptidoglycan (PG) cell wall. This structure is essential for cell integrity and its biogenesis pathway is a key antibiotic target. Most bacteria utilize two types of synthases that polymerize glycan strands and crosslink them: class A penicillin-binding proteins (aPBPs) and complexes of SEDS proteins and class B PBPs (bPBPs). Although the enzymatic steps of PG synthesis are well characterized, the steps involved in terminating PG glycan polymerization remain poorly understood. A few years ago, the conserved lytic transglycosylase MltG was identified as a potential terminase for PG synthesis in Escherichia coli. However, characterization of the in vivo function of MltG was hampered by the lack of a growth or morphological phenotype in ΔmltG cells. Here, we report the isolation of MltG-defective mutants as suppressors of lethal deficits in either aPBP or SEDS/bPBP PG synthase activity. We used this phenotype to perform a domain-function analysis for MltG, which revealed that access to the inner membrane is important for its in vivo activity. Overall, our results support a model in which MltG functions as a terminase for both classes of PG synthases by cleaving PG glycans as they are being actively synthesized.


Assuntos
Parede Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/biossíntese , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidoglicano Glicosiltransferase/genética
15.
Nature ; 537(7622): 634-638, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27525505

RESUMO

Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan-synthetizing machinery called the Rod complex. Here we report that, in Bacillus subtilis, this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases the expression of RodA, a widely conserved core component of the Rod complex. RodA is a member of the SEDS (shape, elongation, division and sporulation) family of proteins, which have essential but ill-defined roles in cell wall biogenesis during growth, division and sporulation. Our genetic and biochemical analyses indicate that SEDS proteins constitute a family of peptidoglycan polymerases. Thus, B. subtilis and probably most bacteria use two distinct classes of polymerase to synthesize their exoskeleton. Our findings indicate that SEDS family proteins are core cell wall synthases of the cell elongation and division machinery, and represent attractive targets for antibiotic development.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/biossíntese , Polimerização , Antibacterianos/farmacologia , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Divisão Celular , Parede Celular/química , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Mutação , Oligossacarídeos/farmacologia , Proteínas de Ligação às Penicilinas/classificação , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/química , Peptidoglicano Glicosiltransferase/genética , Fenótipo
16.
PLoS Genet ; 15(8): e1008284, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437147

RESUMO

Several important human pathogens are represented in the Corynebacterineae suborder, including Mycobacterium tuberculosis and Corynebacterium diphtheriae. These bacteria are surrounded by a multilayered cell envelope composed of a cytoplasmic membrane, a peptidoglycan (PG) cell wall, a second polysaccharide layer called the arabinogalactan (AG), and finally an outer membrane-like layer made of mycolic acids. Several anti-tuberculosis drugs target the biogenesis of this complex envelope, but their efficacy is declining due to resistance. New therapies are therefore needed to treat diseases caused by these organisms, and a better understanding of the mechanisms of envelope assembly should aid in their discovery. To this end, we generated the first high-density library of transposon insertion mutants in the model organism C. glutamicum. Transposon-sequencing was then used to define its essential gene set and identify loci that, when inactivated, confer hypersensitivity to ethambutol (EMB), a drug that targets AG biogenesis. Among the EMBs loci were genes encoding RipC and the FtsEX complex, a PG cleaving enzyme required for proper cell division and its predicted regulator, respectively. Inactivation of the conserved steAB genes (cgp_1603-1604) was also found to confer EMB hypersensitivity and cell division defects. A combination of quantitative microscopy, mutational analysis, and interaction studies indicate that SteA and SteB form a complex that localizes to the cytokinetic ring to promote cell separation by RipC-FtsEX and may coordinate its PG remodeling activity with the biogenesis of other envelope layers during cell division.


Assuntos
Antituberculosos/farmacologia , Membrana Externa Bacteriana/metabolismo , Divisão Celular/genética , Corynebacterium glutamicum/fisiologia , Farmacorresistência Bacteriana/genética , Membrana Externa Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Corynebacterium glutamicum/efeitos dos fármacos , Elementos de DNA Transponíveis/genética , Etambutol/farmacologia , Galactanos/biossíntese , Loci Gênicos , Mutação , Ácidos Micólicos/metabolismo , Peptidoglicano/metabolismo
17.
J Bacteriol ; 203(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33558391

RESUMO

The bacterial peptidoglycan (PG) cell wall maintains cell shape and prevents osmotic lysis. During growth of rod-shaped cells, PG is incorporated along the cell cylinder by the RodA-PBP2 synthase of the multi-protein Rod system (elongasome). Filaments of the actin-like MreB protein orient synthesis of the new PG material. They are connected to the RodA-PBP2 synthase in part through the RodZ component. MreC and MreD are other conserved components of the system, but their function is not well understood. Amino acid changes in RodA-PBP2 were recently identified that bypass a requirement for MreC and MreD function, suggesting the Mre proteins act as activators of the synthase. To further investigate their function, we developed a genetic strategy to identify dominant-negative alleles of mreC and mreD in Escherichia coli Residues essential for Rod system function were identified at the junction of two subdomains within MreC and in a predicted ligand-binding pocket of MreD. Additionally, we found that although the proline-rich C-terminal domain of MreC is non-essential, substitutions within this region disrupt its function. Based on these results, we propose that the C-terminus of MreC and the putative ligand-binding domain of MreD play regulatory roles in controlling Rod system activity.IMPORTANCE: Cell shape in bacteria is largely determined by the cell wall structure that surrounds them. The multi-protein machine called the Rod system (elongasome) has long been implicated in rod-shape determination in bacilli. However, the functions of many of its conserved components remain unclear. Here, we describe a new genetic system to dissect the function of these proteins and how we used it to identify potential regulatory domains within them that may modulate the function of the shape-determining machinery.

18.
Mol Microbiol ; 114(6): 966-978, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866331

RESUMO

A peptidoglycan (PG) cell wall composed of glycans crosslinked by short peptides surrounds most bacteria and protects them against osmotic rupture. In Escherichia coli, cell elongation requires crosslink cleavage by PG endopeptidases to make space for the incorporation of new PG material throughout the cell cylinder. Cell division, on the contrary, requires the localized synthesis and remodeling of new PG at midcell by the divisome. Little is known about the factors that modulate transitions between these two modes of PG biogenesis. In a transposon-insertion sequencing screen to identify mutants synthetically lethal with a defect in the division protein FtsP, we discovered that mutants impaired for cell division are sensitive to elevated activity of the endopeptidases. Increased endopeptidase activity in these cells was shown to interfere with the assembly of mature divisomes, and conversely, inactivation of MepS was found to suppress the lethality of mutations in essential division genes. Overall, our results are consistent with a model in which the cell elongation and division systems are in competition with one another and that control of PG endopeptidase activity represents an important point of regulation influencing the transition from elongation to the division mode of PG biogenesis.


Assuntos
Divisão Celular , Endopeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Peptidoglicano/metabolismo , Parede Celular/genética , Cisteína Endopeptidases , Regulação Bacteriana da Expressão Gênica , Mutação
19.
Nat Chem Biol ; 15(3): 221-231, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664686

RESUMO

Members of the Corynebacterineae, including Corynebacterium and Mycobacterium, have an atypical cell envelope characterized by an additional mycomembrane outside of the peptidoglycan layer. How this multilayered cell envelope is assembled remains unclear. Here, we tracked the assembly dynamics of different envelope layers in Corynebacterium glutamicum and Mycobacterium smegmatis by using metabolic labeling and found that the septal cell envelope is assembled sequentially in both species. Additionally, we demonstrate that in C. glutamicum, the peripheral peptidoglycan layer at the septal junction remains contiguous throughout septation, forming a diffusion barrier for the fluid mycomembrane. This diffusion barrier is resolved through perforations in the peripheral peptidoglycan, thus leading to the confluency of the mycomembrane before daughter cell separation (V snapping). Furthermore, the same junctional peptidoglycan also serves as a mechanical link holding the daughter cells together and undergoes mechanical fracture during V snapping. Finally, we show that normal V snapping in C. glutamicum depends on complete assembly of the septal cell envelope.


Assuntos
Divisão Celular/fisiologia , Corynebacterium glutamicum/crescimento & desenvolvimento , Mycobacterium smegmatis/crescimento & desenvolvimento , Bactérias , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias , Membrana Celular/metabolismo , Parede Celular/metabolismo , Corynebacterium/crescimento & desenvolvimento , Corynebacterium/metabolismo , Corynebacterium glutamicum/metabolismo , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos , Peptidoglicano
20.
Proc Natl Acad Sci U S A ; 115(12): 3150-3155, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507210

RESUMO

Penicillin-binding proteins (PBPs) are synthases required to build the essential peptidoglycan (PG) cell wall surrounding most bacterial cells. The mechanisms regulating the activity of these enzymes to control PG synthesis remain surprisingly poorly defined given their status as key antibiotic targets. Several years ago, the outer-membrane lipoprotein EcLpoB was identified as a critical activator of Escherichia coli PBP1b (EcPBP1b), one of the major PG synthases of this organism. Activation of EcPBP1b is mediated through the association of EcLpoB with a regulatory domain on EcPBP1b called UB2H. Notably, Pseudomonas aeruginosa also encodes PBP1b (PaPBP1b), which possesses a UB2H domain, but this bacterium lacks an identifiable LpoB homolog. We therefore searched for potential PaPBP1b activators and identified a lipoprotein unrelated to LpoB that is required for the in vivo activity of PaPBP1b. We named this protein LpoP and found that it interacts directly with PaPBP1b in vitro and is conserved in many Gram-negative species. Importantly, we also demonstrated that PaLpoP-PaPBP1b as well as an equivalent protein pair from Acinetobacter baylyi can fully substitute for EcLpoB-EcPBP1b in E. coli for PG synthesis. Furthermore, we show that amino acid changes in PaPBP1b that bypass the PaLpoP requirement map to similar locations in the protein as changes promoting EcLpoB bypass in EcPBP1b. Overall, our results indicate that, although different Gram-negative bacteria activate their PBP1b synthases with distinct lipoproteins, they stimulate the activity of these important drug targets using a conserved mechanism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Acinetobacter/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Elementos de DNA Transponíveis , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Mutação , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Filogenia , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa