Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(7): 873-879, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231245

RESUMO

The interconversion between electrical and mechanical energies is pivotal to ferroelectrics to enable their applications in transducers, actuators and sensors. Ferroelectric polymers exhibit a giant electric-field-induced strain (>4.0%), markedly exceeding the actuation strain (≤1.7%) of piezoelectric ceramics and crystals. However, their normalized elastic energy densities remain orders of magnitude smaller than those of piezoelectric ceramics and crystals, severely limiting their practical applications in soft actuators. Here we report the use of electro-thermally induced ferroelectric phase transition in percolative ferroelectric polymer nanocomposites to achieve high strain performance in electric-field-driven actuation materials. We demonstrate a strain of over 8% and an output mechanical energy density of 11.3 J cm-3 at an electric field of 40 MV m-1 in the composite, outperforming the benchmark relaxor single-crystal ferroelectrics. This approach overcomes the trade-off between mechanical modulus and electro-strains in conventional piezoelectric polymer composites and opens up an avenue for high-performance ferroelectric actuators.


Assuntos
Eletricidade , Nanocompostos , Polímeros
2.
Nature ; 562(7725): 96-100, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283102

RESUMO

Piezoelectricity-the direct interconversion between mechanical and electrical energies-is usually remarkably enhanced at the morphotropic phase boundary of ferroelectric materials1-4, which marks a transition region in the phase diagram of piezoelectric materials and bridges two competing phases with distinct symmetries1,5. Such enhancement has enabled the recent development of various lead and lead-free piezoelectric perovskites with outstanding piezoelectric properties for use in actuators, transducers, sensors and energy-harvesting applications5-8. However, the morphotropic phase boundary has never been observed in organic materials, and the absence of effective approaches to improving the intrinsic piezoelectric responses of polymers9,10 considerably hampers their application to flexible, wearable and biocompatible devices. Here we report stereochemically induced behaviour in ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) copolymers, which is similar to that observed at morphotropic phase boundaries in perovskites. We reveal that compositionally tailored tacticity (the stereochemical arrangement of chiral centres related to the TrFE monomers11,12) can lead to intramolecular order-to-disorder evolution in the crystalline phase and thus to an intermediate transition region that is reminiscent of the morphotropic phase boundary, where competing ferroelectric and relaxor properties appear simultaneously. Our first-principles calculations confirm the crucial role of chain tacticity in driving the formation of this transition region via structural competition between the trans-planar and 3/1-helical phases. We show that the P(VDF-TrFE) copolymer with the morphotropic composition exhibits a longitudinal piezoelectric coefficient of -63.5 picocoulombs per newton, outperforming state-of-the-art piezoelectric polymers10. Given the flexibility in the molecular design and synthesis of organic ferroelectric materials, this work opens up the way for the development of scalable, high-performance piezoelectric polymers.

3.
Nat Mater ; 19(11): 1169-1174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32601482

RESUMO

Relaxor ferroelectrics exhibit outstanding dielectric, electromechanical and electrocaloric properties, and are the materials of choice for acoustic sensors, solid-state coolers, transducers and actuators1-4. Despite more than five decades of intensive study, relaxor ferroelectrics remain one of the least understood material families in ferroelectric materials and condensed matter physics5-14. Here, by combining X-ray diffraction, atomic force microscope infrared spectroscopy and first-principles calculations, we reveal that the relaxor behaviour of ferroelectric polymers originates from conformational disorder, completely different from classic perovskite relaxors, which are typically characterized by chemical disorder. We show that chain chirality is essential to the formation of the disordered helix conformation arising from local distortions of gauche torsional angles, which consequently give rise to relaxor properties in polymers. This study not only sheds light on the fundamental mechanisms of relaxor ferroelectrics, but also offers guidance for the discovery of new ferroelectric relaxor organic materials for flexible, scalable and biocompatible sensor and energy applications.

4.
Nano Lett ; 17(10): 6241-6247, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28876939

RESUMO

Electrical contact to low-dimensional (low-D) materials is a key to their electronic applications. Traditional metal contacts to low-D semiconductors typically create gap states that can pin the Fermi level (EF). However, low-D metals possessing a limited density of states at EF can enable gate-tunable work functions and contact barriers. Moreover, a seamless contact with native bonds at the interface, without localized interfacial states, can serve as an optimal electrode. To realize such a seamless contact, one needs to develop atomically precise heterojunctions from the atom up. Here, we demonstrate an all-carbon staircase contact to ultranarrow armchair graphene nanoribbons (aGNRs). The coherent heterostructures of width-variable aGNRs, consisting of 7, 14, 21, and up to 56 carbon atoms across the width, are synthesized by a surface-assisted self-assembly process with a single molecular precursor. The aGNRs exhibit characteristic vibrational modes in Raman spectroscopy. A combined scanning tunneling microscopy and density functional theory study reveals the native covalent-bond nature and quasi-metallic contact characteristics of the interfaces. Our electronic measurements of such seamless GNR staircase constitute a promising first step toward making low resistance contacts.

5.
Biochemistry ; 54(5): 1233-42, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25594136

RESUMO

Copper-containing nitrite reductases (CuNiRs) catalyze the reduction of nitrite to nitric oxide, a key step in the denitrification process that maintains balance between organic and inorganic nitrogen. Despite their importance, their functioning is not well understood. In this work, we carry out first-principles calculations and show that the available structural data are consistent only with a single mechanism. For this mechanism, we determine the activation energies, transition states, and minimum energy pathways of CuNiR. The calculations lead to an updated enzymatic mechanism and resolve several controversial issues. In particular, our work identifies the origins of the two protons necessary for the enzymatic function and shows that the transformation from the initial O-coordination of substrate to the final N-coordination of product is achieved by electron transfer from T1 copper to T2 copper, rather than by the previously reported side-on coordination of a NO intermediate, which only takes place in the reduced enzyme. We also examine the role of structural change in the critical residue Asp(98), reported in one experimental study, and find that while the structural change affects the energetics of substrate attachment and product release at the T2 copper reaction center, it does not significantly affect the activation energy and reaction pathways of the nitrite reduction process.


Assuntos
Achromobacter/enzimologia , Proteínas de Bactérias/química , Cobre/química , Óxido Nítrico/química , Nitrito Redutases/química , Achromobacter/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredução
6.
Phys Rev Lett ; 108(8): 087802, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463575

RESUMO

Using first-principles simulations, we identify the microscopic origin of the nonlinear dielectric response and high energy density of polyvinylidene-fluoride-based polymers as a cooperative transition path that connects nonpolar and polar phases of the system. This path explores a complex torsional and rotational manifold and is thermodynamically and kinetically accessible at relatively low temperatures. Furthermore, the introduction of suitable copolymers significantly alters the energy barriers between phases providing tunability of both the energy density and the critical fields.

7.
J Chem Phys ; 136(1): 014702, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22239795

RESUMO

Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is a deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.


Assuntos
Nanotubos de Carbono/química , Nitrogênio/química , Teoria Quântica
8.
Proc Natl Acad Sci U S A ; 106(28): 11576-81, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19561303

RESUMO

The prion protein (PrP) is responsible for a group of neurodegenerative diseases called the transmissible spongiform encephalopathies. The normal function of PrP has not yet been discovered, but indirect evidence suggests a linkage to its ability to bind copper. In this article, low-copper-concentration bindings of Cu(2+) to PrP are investigated by using a recently developed hybrid density functional theory (DFT)/DFT method. It is found that at the lowest copper concentrations, the binding site consists of 4 histidine residues coordinating the copper through epsilon imidazole nitrogens. At higher concentrations, 2 histidines are involved in the binding, one of them in the axial position. These results are in good agreement with existing experimental data. Comparison of free energies for all modes of coordination shows that when enough copper is available, the binding sites will spontaneously rearrange to accommodate more copper ions, despite the fact that binding energy per copper ion decreases with concentration. These findings support the hypothesis that PrP acts as a copper buffer in vivo, protecting other proteins from the attachment of copper ions. Using large-scale classical molecular dynamics, we also probe the structure of full-length copper-bound PrP, including its unfolded N-terminal domain. The results show that copper attachment leads to rearrangement of the structure of the Cu-bonded octarepeat region and to development of turns in areas separating copper-bound residues. These turns make the flexible N-terminal domain more rigid and thus more resistant to misfolding. The last result suggests that copper binding plays a beneficial role in the initial stages of prion diseases.


Assuntos
Cobre/metabolismo , Modelos Moleculares , Príons/metabolismo , Sítios de Ligação/genética , Histidina/metabolismo , Solventes/metabolismo
9.
Science ; 375(6587): 1418-1422, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324308

RESUMO

Electromechanical (EM) coupling-the conversion of energy between electric and mechanical forms-in ferroelectrics has been used for a broad range of applications. Ferroelectric polymers have weak EM coupling that severely limits their usefulness for applications. We introduced a small amount of fluorinated alkyne (FA) monomers (<2 mol %) in relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE) terpolymer that markedly enhances the polarization change with strong EM coupling while suppressing other polarization changes that do not contribute to it. Under a low-dc bias field of 40 megavolts per meter, the relaxor tetrapolymer has an EM coupling factor (k33) of 88% and a piezoelectric coefficient (d33) >1000 picometers per volt. These values make this solution-processed polymer competitive with ceramic oxide piezoelectrics, with the potential for use in distinct applications.

10.
Nanoscale ; 13(24): 10933-10942, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34132304

RESUMO

The mechanism of the recently discovered enhancement of dielectric properties in dilute polymer-nanoparticle composites is investigated by experiments and computer simulations. We show that the weakening of the hydrogen bonds between the nanoparticles and the polymer chains reduces the polymer-nanoparticle composite's dielectric enhancement. The subsequent multiscale simulations investigate the attachment of solvated highly dipolar polymers to oxide nanoparticles, which leads to deposition of nanoparticle-polymer blobs during solution casting and a reduced density compared to a neat polymer film. Coarse-grained simulations of nanocomposite morphology are followed by molecular dynamics and density functional theory calculations of permittivities. The increased free volume in the nanocomposite enables easier reorientation of monomer dipoles with an applied electric field, and thus a higher dielectric permittivity. The numerical results are in excellent agreement with experimental data for PEEU and PEI nanocomposites.

11.
Phys Rev Lett ; 105(23): 236803, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231493

RESUMO

We study molecular transistors where graphene nanoribbons act as three metallic electrodes connected to a ring-shaped 18-annulene molecule. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show that these nanostructures exhibit exponentially small transmission when the source and drain electrodes are attached in a configuration with destructive interference of electron paths around the ring. The third electrode, functioning either as an attached infinite-impedance voltage probe or as an "air-bridge" top gate covering half of molecular ring, introduces dephasing that brings the transistor into the "on" state with its transmission in the latter case approaching the maximum limit for a single conducting channel device. The current through the latter device can also be controlled in the far-from-equilibrium regime by applying a gate voltage.

12.
Adv Mater ; 32(49): e2005431, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33150671

RESUMO

Both experimental results and theoretical models suggest the decisive role of the filler-matrix interfaces on the dielectric, piezoelectric, pyroelectric, and electrocaloric properties of ferroelectric polymer nanocomposites. However, there remains a lack of direct structural evidence to support the so-called interfacial effect in dielectric nanocomposites. Here, a chemical mapping of the interfacial coupling between the nanofiller and the polymer matrix in ferroelectric polymer nanocomposites by combining atomic force microscopy-infrared spectroscopy (AFM-IR) with first-principles calculations and phase-field simulations is provided. The addition of ceramic fillers into a ferroelectric polymer leads to augmentation of the local conformational disorder in the vicinity of the interface, resulting in the local stabilization of the all-trans conformation (i.e., the polar ß phase). The formation of highly polar and inhomogeneous interfacial regions, which is further enhanced with a decrease of the filler size, has been identified experimentally and verified by phase-field simulations and density functional theory (DFT) calculations. This work offers unprecedented structural insights into the configurational disorder-induced interfacial effect and will enable rational design and molecular engineering of the filler-matrix interfaces of electroactive polymer nanocomposites to boost their collective properties.

13.
J Chem Phys ; 131(16): 164105, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19894925

RESUMO

We present a generalized approach for computing electron conductance and I-V characteristics in multiterminal junctions from first-principles. Within the framework of Keldysh theory, electron transmission is evaluated employing an O(N) method for electronic-structure calculations. The nonequilibrium Green function for the nonequilibrium electron density of the multiterminal junction is computed self-consistently by solving Poisson equation after applying a realistic bias. We illustrate the suitability of the method on two examples of four-terminal systems, a radialene molecule connected to carbon chains and two crossed-carbon chains brought together closer and closer. We describe charge density, potential profile, and transmission of electrons between any two terminals. Finally, we discuss the applicability of this technique to study complex electronic devices.

14.
J Chem Theory Comput ; 15(12): 6859-6864, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31647650

RESUMO

Phonons are fundamental to understanding the dynamical and thermal properties of materials. However, first-principles phonon calculations are usually limited to moderate-size systems due to their high computational requirements. We implemented the finite displacement method (FDM) in the highly parallel real-space multigrid (RMG) suite of codes to study phonon properties. RMG scales from desktops to clusters and supercomputers containing thousands of nodes, fully supports graphics processing units (GPUs), including multiple GPUs per node, and is very suitable for large-scale electronic structure calculations. It is used as the core computational kernel to calculate the force constants matrix with FDM. By comparing with other widely used density functional theory packages and experimental data from inelastic neutron scattering, we demonstrate that RMG is very accurate in calculating forces at small displacements from equilibrium positions. The calculated phonon band structures and vibrational spectra for a variety of different systems are in very good agreement with plane-wave-based density functional theory codes, Quantum ESPRESSO, CASTEP and VASP, and these results have been validated comparing with inelastic neutron scattering experimental data measured at the VISION spectrometer at the Spallation Neutron Source.

15.
Chem Commun (Camb) ; 55(79): 11848-11851, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31528899

RESUMO

The influence of substrate steps on the bottom-up synthesis of atomically precise graphene nanoribbons (GNRs) on an Au(111) surface is investigated. Straight surface steps are found to promote the assembly of long and compact arrays of polymers with enhanced interchain π-π stacking interactions, which create a steric hindrance effect on cyclodehydrogenation to suppress the H passivation of polymer ends. The modified two-stage growth process results in periodic arrays of GNRs with doubled average length near step edges.

16.
Nanoscale ; 9(4): 1687-1698, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28084486

RESUMO

Functionalized carbon nanotubes have great potential for nanoscale sensing applications, yet many aspects of their sensing mechanisms are not understood. Here, two paradigmatic sensor configurations for detection of biologically important molecules are investigated through ab initio calculations: a non-covalently functionalized nanotube for glucose detection and a covalently functionalized nanotube for ethylene detection. Glucose and ethylene control key life processes of humans and plants, respectively, despite of their structural and chemical simplicity. The sensors' electrical conductance and transmission coefficients are evaluated at the full density-functional theory level via the non-equilibrium Green's function method. We also investigate the effects of the density of the receptors, the band gaps of the nanotubes, the source-drain voltages, and the atomic modification of the receptor on detection sensitivities. A clear atomistic picture emerges about the mechanisms involved in glucose and ethylene sensing. While semiconducting nanotubes exhibit good sensitivities in both cases, the current through metallic nanotubes is only weakly affected by analyte attachment. These quantitative results could guide the design of improved sensors.

17.
Nanoscale ; 9(31): 10992-10997, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28752176

RESUMO

In order to increase the dielectric constants of polymer-based dielectrics, composite approaches, in which inorganic fillers with much higher dielectric constants are added to the polar polymer matrix, have been investigated. However, high dielectric constant fillers cause high local electric fields in the polymer, resulting in a large reduction of the electric breakdown strength. We show that a significant increase in the dielectric constant can be achieved in polyetherimide nanocomposites with nanofillers whose dielectric constant can be similar to that of the matrix. The presence of nanofillers reduces the constraints on the dipole response to the applied electric field, thus enhancing the dielectric constant. Our results demonstrate that through nanostructure engineering, the dielectric constant of nanocomposites can be enhanced markedly without using high dielectric constant nanofillers.

18.
Nat Commun ; 8: 14815, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287090

RESUMO

In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer-GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. This finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.

20.
Phys Rev Lett ; 85(20): 4381-4, 2000 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-11060643

RESUMO

The structure of the ( 3x2) reconstruction of beta-SiC(001) surface has been identified by comparing reflectance anisotropy spectra calculated from first principles with recent measurements. Only the calculations for the two-adlayer asymmetric-dimer model agree with experiment. The two prominent peaks at 3.6 and 5.0 eV found experimentally are assigned to electronic transitions between surface and bulklike electronic states. A further pronounced anisotropy at 2.0 eV, due to transitions between surface states, is predicted.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa