Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 15(20): 5145-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19334022

RESUMO

A new guanidinium 3,3'-functionalized bipyridylruthenium(II) complex has been prepared for the differential sensing of L-glutamate and dihydrogenphosphate anions depending on the luminescent detection scheme. The effects of such anions on the photoluminescent (PL) and electrochemiluminescent (ECL) properties of the complex have been investigated and compared. The PL intensity increases up to fourfold in the presence of L-glutamate. The increase of intensity in the presence of dihydrogenphosphate is weaker and no change in PL intensity is observed in presence of acetate, iodide, or chloride anions. With n-tripropylamine, ECL emission of the Ru(II) complex is initiated at 1.45 V versus Ag/AgCl/KCl and the ECL intensity increases only in the presence of dihydrogenphosphate. Indeed, L-glutamate is already oxidized at the relatively high potential required for ECL generation and thus it does not affect the ECL signal. The comparison of the competitive ECL and PL assays in a mixture of anions confirms the differential detection of L-glutamate and of dihydrogenphosphate. Thus, both sensing channels (i.e., PL and ECL) show different selectivities depending on the nature and on the electroactivity of the target anions. Multianion analysis is demonstrated in competitive assays using complementary detection methods.


Assuntos
2,2'-Dipiridil/química , Compostos Organometálicos/química , Rutênio/química , Ânions , Técnicas Eletroquímicas/métodos , Ácido Glutâmico/análise , Guanidina/química , Luminescência , Medições Luminescentes/métodos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Organometálicos/síntese química , Fosfatos/análise , Fotoquímica , Estereoisomerismo
2.
Chem Commun (Camb) ; (17): 1968-70, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18536790

RESUMO

An aromatic oligoamide sequence designed to adopt a helically folded conformation surrounding a hollow space is shown to undergo hybridization into a double helical duplex in which the two strands fill each other's hollow.


Assuntos
Modelos Moleculares , Antracenos/química , Compostos Aza/química , Cristalografia por Raios X , Cinética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Piridinas/química , Quinolinas/química
3.
Chem Commun (Camb) ; (12): 1230-2, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17356765

RESUMO

A dizinc complex with a polyamine macrocycle is able to selectively bind and sense uridine (U) as well as the uridine-containing ribodinucleotides U(3'-5')pU and U(3'-5')pA, thanks to an exciplex emission arising from a pi-stacked complex involving the dipyridine unit and Zn(II)-bound uridine moieties.


Assuntos
Fluorescência , Nucleotídeos/química , Uridina/química , Zinco/química , Concentração de Íons de Hidrogênio
5.
J Org Chem ; 73(7): 2687-94, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18331057

RESUMO

The synthesis of various 1,8-diaza-4,5-dialkoxy-2,7-anthracene dicarboxylic acid derivatives and their incorporation into cyclic and helically folded aromatic oligoamides are reported. The ability of the diaza-anthracene monomers to undergo photoaddition or head-to-tail photodimerization was investigated in the solid state and in solution. Quantitative conversion of a monomer diester to the corresponding head-to-tail photodimer could be achieved in the solid state without protection from oxygen. The formation of an emissive excimer between two diaza-anthracene units appended at the end of a helically folded oligomer was demonstrated. Intramolecular photodimerization was not observed in this compound, possibly due to the low thermal stability of the head-to-head photoadduct. A cyclic oligoamide composed of two diaza-anthracene and two pyridine units was shown to adopt a flat conformation and to form columnar stacks in the solid state. Longer, noncyclic oligoamides composed of one or two diaza-anthracene units were shown to adopt helical conformations that exist preferentially as double helical dimers.


Assuntos
Amidas/química , Antracenos/síntese química , Ácidos Dicarboxílicos/síntese química , Antracenos/química , Antracenos/efeitos da radiação , Cristalografia por Raios X , Ciclização , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/efeitos da radiação , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Fotoquímica , Estereoisomerismo , Raios Ultravioleta
6.
Chemistry ; 13(30): 8463-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17661324

RESUMO

We report on the dramatic effect of increasing helix diameter on the hybridization of oligopyridine-dicarboxamide strands into double helices. Upon replacing a single pyridine by a 1,8-diazaanthracene unit within an oligomeric strand, a 4.7 A enlargement of the helix diameter occurs parallel to the long anthracene axis. This structure change results in a spectacular stabilization of the double helical hybrids derived from these strands (factors of over 10(7)). Detailed investigations of the hybridization process using X-ray crystallography, NMR, fluorescence measurements and molecular mechanics calculations allowed us to assign the duplex stabilization to two enthalpic effects. First, the increase in diameter results in an augmented surface, involved in intermolecular pi-pi stacking. Second, the enlarged diameter leads to a lower tilt angle of the helical strand, with respect to the helix axis, which in turn results in smaller dihedral angles at the aryl-amide linkages and thus a considerably lowered enthalpic cost of the spring-like extension of the strands during the hybridization process. These results provide novel insights into how subtle tuning of molecular components may result in considerable and rationalizable changes in double helical supramolecular architectures.

7.
Inorg Chem ; 43(9): 2793-802, 2004 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-15106965

RESUMO

The host-guest interaction between four hexaaza macrocyclic ligands (3,6,9,17,20,23-hexaazatricyclo[23.3.1.1]triaconta-1(29),11,13,15 (30),25(27)-hexaene (Bd), 3,6,9,16,19,22-hexaazatricyclo[22.2.2.2]triaconta-1(27),11(30),12,14(29),24(28),25-hexaene (P2), 3,7,11,19,23,27-hexaazatricyclo[27.3.1.1]tetratriaconta-1(33),13, 15,17(34),29,31-hexaene (Bn), 3,7,11,18,22,26-hexaazatricyclo[26.2.2.2]tetratriaconta-1(31),13(34),14,16(33),28(32),29-hexaene (P3)) and two dicarboxylic acids (oxalic acid, H2Ox; oxydiacetic acid, H2Od) have been investigated using potentiometric equilibrium methods. Ternary complexes are formed in aqueous solution as a result of hydrogen bond formation and Coulombic interactions between the host and the guest. In the [(H6P2)(Ox)]4+ complex those bonding interactions reach a maximum yielding a log KR6 of 6.08. This species has been further characterized by means of X-ray diffraction analysis showing that the oxalate guest molecule is situated inside the macrocyclic cavity of the P2 host. X-ray diffraction analysis has also been carried out for the complex [(H6Bn)(Od)2](Br)2.6H2O, where now the oxydiacetate is bonded to the host but outside the macrocyclic cavity. Competitive distribution diagrams and total species distribution diagrams are used to graphically illustrate the most salient features of these systems, which are the following: (a) The Bd and P2 ligands bind Ox significantly much more stronger than Od. This is clearly manifested for the P2:Ox:Od competitive system, where a selectivity of 92.5% in favor of the P2-Ox complexation against P2-Od is obtained at p[H] = 2.8. (b) No isomeric effect is found when comparing binding capacities of oxalate with two isomeric ligands such as P2 and Bd since their affinity to bind the substrate is relatively similar. (c) Bn and P3 ligands have a similar behavior as described in (a) for P2 and Bd except that due to the increase of cavity size the differentiation becomes smaller. (d) Less basic ligands containing two methylenic units Bd (log betaH6 = 40.42) and P2 (40.42) bind stronger to the substrates than those containing three methylenic units Bn (50.32) and P3 (50.64) even though their relative predominance depends on p[H].

8.
Inorg Chem ; 43(20): 6255-65, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15446871

RESUMO

Zn(II) binding by the dipyridine-containing macrocycles L1-L3 has been analyzed by means of potentiometric measurements in aqueous solutions. These ligands contain one (L1, L2) or two (L3) 2,2'-dipyridine units as an integral part of a polyamine macrocyclic framework having different dimensions and numbers of nitrogen donors. Depending on the number of donors, L1-L3 can form stable mono- and/or dinuclear Zn(II) complexes in a wide pH range. Facile deprotonation of Zn(II)-coordinated water molecules gives mono- and dihydroxo-complexes from neutral to alkaline pH values. The ability of these complexes as nucleophilic agents in hydrolytic processes has been tested by using bis(p-nitrophenyl) phosphate (BNPP) as a substrate. In the dinuclear complexes the two metals play a cooperative role in BNPP cleavage. In the case of the L2 dinuclear complex [Zn(2)L2(OH)(2)](2+), the two metals act cooperatively through a hydrolytic process involving a bridging interaction of the substrate with the two Zn(II) ions and a simultaneous nucleophilic attack of a Zn-OH function at phosphorus; in the case of the dizinc complex with the largest macrocycle L3, only the monohydroxo complex [Zn(2)L3(OH)](3+) promotes BNPP hydrolysis. BNPP interacts with a single metal, while the hydroxide anion may operate a nucleophilic attack. Both complexes display high rate enhancements in BNPP cleavage with respect to previously reported dizinc complexes, due to hydrophobic and pi-stacking interactions between the nitrophenyl groups of BNPP and the dipyridine units of the complexes.


Assuntos
2,2'-Dipiridil/química , Compostos Macrocíclicos/síntese química , Compostos Organometálicos/síntese química , Organofosfatos/síntese química , Poliaminas/síntese química , Zinco/química , 2,2'-Dipiridil/análogos & derivados , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Hidrólise , Compostos Macrocíclicos/química , Modelos Moleculares , Compostos Organometálicos/química , Poliaminas/química , Água/química
9.
J Org Chem ; 67(25): 9107-10, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12467441

RESUMO

The synthesis of three new tris-macrocycles, containing three [12]aneN(4) (L1), [12]aneN(3)O (L2), or [14]aneN(4) (L3) moieties appended to a tren unit, is reported. The crystal structure of the [(Na(ClO(4))(6)) subset L1(2)H(13)]Na(6)Cl(2)(ClO(4))(12) compound shows the anionic cluster [Na(ClO(4))(6)](5)(-) assembled inside the cavity defined by two bowl-shaped polyammonium receptors, held by multiple charge-charge and hydrogen bond interactions.

10.
Inorg Chem ; 42(21): 6929-39, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-14552645

RESUMO

The synthesis and characterization of three new bis([9]aneN(3)) ligands, containing respectively 2,2'-bipyridine (L(1)), 1,10-phenanthroline (L(2)), and quinoxaline (L(3)) moieties linking the two macrocyclic units, are reported. Proton binding and Cu(II), Zn(II), Cd(II), and Pb(II) coordination with L(1)-L(3) have been studied by potentiometric titrations and, for L(1) and L(2), by spectrophotometric UV-vis measurements in aqueous solutions. All ligands can give stable mono- and dinuclear complexes. In the case of L(1), trinuclear Cu(II) complexes are also formed. The stability constants and structural features of the formed complexes are strongly affected by the different architecture and binding properties of the spacers bridging the two [9]aneN(3) units. In the case of the L(1) and L(2) mononuclear complexes, the metal is coordinated by the three donors of one [9]aneN(3) moiety; in the [ML(2)](2+) complexes, however, the phenanthroline nitrogens are also involved in metal binding. Finally, in the [ML(3)](2+) complexes both macrocyclic units, at a short distance from each other, can be involved in metal coordination, giving rise to sandwich complexes. In the binuclear complexes each metal ion is generally coordinated by one [9]aneN(3) unit. In L(1), however, the dipyridine nitrogens can also act as a potential binding site for metals. The dinuclear complexes show a marked tendency to form mono-, di-, and, in some cases, trihydroxo species in aqueous solutions. The resulting M-OH functions may behave as nucleophiles in hydrolytic reactions. The hydrolysis rate of bis(p-nitrophenyl)phosphate (BNPP) was measured in aqueous solution at 308.1 K in the presence of the L(2) and L(3) dinuclear Zn(II) complexes. Both the L(2) complexes [Zn(2)L(2)(OH)(2)](2+) and [Zn(2)L(2)(OH)(3)](+) and the L(3) complex [Zn(2)L(3)(OH)(3)](+) promote BNPP hydrolysis. The [Zn(2)L(3)(OH)(3)](+) complex is ca. 2 orders of magnitude more active than the L(2) complexes, due both to the short distance between the metal centers in [Zn(2)L(3)(OH)(3)](+), which could allow a bridging interaction of the phosphate ester, and to the simultaneous presence of single-metal bound nucleophilic Zn-OH functions. These structural features are substantially corroborated by semiempirical PM3 calculations carried out on the mono-, di-, and trihydroxo species of the L(3) dizinc complex.

11.
Dalton Trans ; (4): 591-7, 2004 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15252521

RESUMO

Protonation and Zn(II), Cd(II) and Hg(II) coordination with the ligand 5-aminoethyl-2,5,8-triaza-[9]-10,23-phenanthrolinophane (L2), which contains an aminoethyl pendant attached to a phenanthroline-containing macrocycle, have been investigated by means of potentiometric, 1H NMR and spectrofluorimetric titrations in aqueous solutions. The coordination properties of L2 are compared with those of the ligand 2,5,8-triaza-[9]-10,23-phenanthrolinophane (L1). Ligand protonation occurs on the aliphatic amine groups and does not involve directly the heteroaromatic nitrogens. The fluorescence emission properties of L2 are controlled by the protonation state of the benzylic nitrogens: when not protonated, their lone pairs are available for an electron transfer process to the excited phenanthroline, quenching the emission. As a consequence, the ligand is emissive only in the highly charged [H3L2]3+ and [H4L2]4+ species, where the benzylic nitrogens are protonated. Considering metal complexation, both [ML1]2+ and [ML2]2+ complexes (M = Zn(II) and Cd(II)) are not emissive, since the benzylic nitrogens are weakly involved in metal coordination, and, once again, they are available for quenching the fluorescence emission. Protonation of the L2 complexes to give [MHL2]3+ species, instead, leads to a recovery of the fluorescence emission. Complex protonation, in fact, occurs on the ethylamino group and gives a marked change of the coordination sphere of the metals, with a stronger involvement in metal coordination of the benzylic nitrogens; consequently, their lone pairs are not available for the process of emission quenching.


Assuntos
Cobre/química , Compostos Macrocíclicos/química , Mercúrio/química , Compostos Organometálicos/química , Fenantrolinas/química , Zinco/química , Cristalografia por Raios X , Etilaminas/química , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Prótons
12.
Inorg Chem ; 43(16): 5134-46, 2004 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-15285691

RESUMO

The synthesis of the new terpyridine-containing macrocycle 2,5,8,11,14-pentaaza[15](6,6' ')cyclo(2,2':6',2' ')terpyridinophane (L) is reported. The ligand contains a pentaamine chain linking the 6,6' ' positions of a terpyridine unit. A potentiometric, (1)H NMR, UV-vis spectrophotometric and fluorescence emission study on the acid-base properties of L in aqueous solutions shows that the first four protonation steps occur on the polyamine chain, whereas the terpyridine nitrogens are involved in proton binding only at strongly acidic pH values. L can form both mono- and dinuclear Cu(II), Zn(II), Cd(II), and Pb(II) complexes in aqueous solution. The crystal structures of the Zn(II) and Cd(II) complexes ([ZnLH](2)(micro-OH))(ClO(4))(5) (6) and ([CdLH](2)(micro-Br))(ClO(4))(5).4H(2)O (7) show that two mononuclear [MLH](3+) units are coupled by a bridging anion (OH(-) in 6 and Br(-) in 7) and pi-stacking interactions between the terpyridine moieties. A potentiometric and spectrophotometric study shows that in the case of Cu(II) and Zn(II) the dimeric assemblies are also formed in aqueous solution containing the ligand and the metals in a 1:1 molar ratio. Protonation of the complexes or the addition of a second metal ion leads to the disruption of the dimers due to the increased electrostatic repulsions between the two monomeric units.

13.
Dalton Trans ; (14): 2180-7, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15249955

RESUMO

The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.


Assuntos
Compostos Organometálicos/análise , Compostos Organometálicos/química , Zinco/análise , Zinco/química , Acetonitrilas , Cristalografia por Raios X , Etanol , Fluorescência , Concentração de Íons de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Técnicas de Sonda Molecular , Estrutura Molecular , Soluções/química , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa