Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475182

RESUMO

This paper presents an innovative approach to the integration of thermoelectric microgenerators (µTEGs) based on thick-film thermopiles of planar constantan-silver (CuNi-Ag) and calcium cobaltite oxide-silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was to consider using the TEG for an active or semi-passive RFID tag. The proposed implementation would allow the communication distance to be increased or even operated without changing batteries. This article discusses the principles of planar thermoelectric microgenerators (µTEGs), focusing on their ability to convert the temperature difference into electrical energy. The concept of integration with active or semi-passive tags is presented, as well as the results of energy efficiency tests, considering various environmental conditions. On the basis of the measurements, the parameters of thermopiles consisting of more thermocouples were simulated to provide the required voltage and power for cooperation with RFID tags. The conclusions of the research indicate promising prospects for the integration of planar thermoelectric microgenerators with RFID technology, opening the way to more sustainable and efficient monitoring and identification systems. Our work provides the theoretical basis and practical experimental data for the further development and implementation of this innovative technology.

2.
Inorg Chem ; 56(1): 480-487, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27991782

RESUMO

We investigated the high-temperature thermoelectric properties of Ga:ZnO bulk compounds, synthesized using a simple and scalable solid-state process. The effects of a low gallium content (x ≤ 0.04 in Zn1-xGaxO1+x/2) on the structural features and electrical/thermal properties are reviewed. Transmission electron microscopy analyses showed that 2D, nonperiodic defects had formed from a doping content as low as x = 0.01 Ga. The structural description of these nanoscale interfaces is, for the first time, carefully investigated in such low-Ga-content samples by HAADF-STEM analyses combined with structural modeling. It was found that the formation of head-to-head inversion twin (h-IT) boundaries and tail-to tail inversion boundaries (t-IB) in the bulk compounds is responsible for strong phonon scattering, while maintaining relatively good electrical conductivity and thereby enhancing the thermoelectric properties. The absolute value of the Seebeck coefficient decreases abruptly from 475 µV/K for x = 0 down to 60 µV/K for x = 0.005 at 350 K. At the same time, the electrical resistivity drops from 1 ohm cm for x = 0 to 1.7 × 10-3 ohm cm for x = 0.005. For higher Ga additions (x > 0.01), the increase in electrical resistivity is likely linked to the formation of interface defects at a larger extent in the wurtzite structure. The thermal conductivity also drops sharply with the increase in the Ga content from ∼33 W/m K for x = 0 to ∼8 for x = 0.04 at 350 K. This study is progress toward the synthesis of other thermoelectric materials where nanoscale interfaces in bulk compounds provide tremendous opportunities for further enhancing both the phonon scattering and the overall figure of merit.

3.
Materials (Basel) ; 15(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806590

RESUMO

Polycrystalline samples of NaCo2-xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained from powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Ceramic samples were prepared by pressing into disc-shaped pellets and subsequently sintering at 880 °C in an argon atmosphere. Effects of low concentrations of Cu doping and the above-mentioned synthesis procedures on the thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between the hot and cold side of the sample, and the figure of merit (ZT) was subsequently calculated. The ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method. The CAC samples showed better mechanical properties compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained during sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the thermoelectric and mechanical properties of NaCo2O4 (NCO) ceramics.

4.
ACS Appl Mater Interfaces ; 13(30): 35924-35929, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296860

RESUMO

The nonlinear response of a material to an external stimulus is vital in fundamental science and technical applications. The power-law current-voltage relationship of a varistor is one such example. An excellent example of such behavior is the power-law current-voltage relationship exhibited by Bi2O3-doped ZnO varistor ceramics, which are the cornerstone of commercial varistor materials for overvoltage protection. Here, we report on a sustainable, ZnO-based varistor ceramic, without the volatile Bi2O3, that is based on Cr2O3 as the varistor former and oxides of Ca, Co, and Sb as the performance enhancers. The material has an ultrahigh α of up to 219, a low IL of less than 0.2 µA/cm2, and a high Eb of up to 925 V/mm, making it superior to state-of-the-art varistor ceramics. The results provide insights into the design of materials with specific characteristics by tailoring states at the grain boundaries. The discovery of this ZnO-Cr2O3-type varistor ceramic represents a major breakthrough in the field of varistors for overvoltage protection and could drastically affect the world market for overvoltage protection.

5.
ACS Appl Mater Interfaces ; 10(7): 6415-6423, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29359559

RESUMO

In/ZnO bulk compounds have been synthesized using a simple solid-state process. In this study, both the structural features and thermoelectric properties of the Zn1-xInxO series with ultralow indium content (0 ≤ x ≤ 0.02) have been studied. High-angle annular dark-field scanning transmission electron microscopy analyses highlight that indium has the ability to create multiple basal plane and pyramidal defects that produce ZnO domains with inverted polarity starting from dopant concentrations as low as 0.25 atom %. Interestingly, the formation of parallel inversion boundaries consisting of InO6 octahedra in the ZnO4 tetrahedra matrix is responsible for phonon scattering while increasing electrical conductivity, thereby enhancing the thermoelectric properties. This effect of multiple extended two-dimensional defects on the thermoelectric properties of ZnO is reported for the first time with such low indium doping. On the chemistry side, the present results point toward a lack of In solubility in the ZnO structure. Moreover, this study is a step forward to the synthesis of other thermoelectric compounds where dopant-induced planar defects in bulk transition metal compounds have the potential to enhance both phonon scattering and electronic conductivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa