Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Photochem Photobiol Sci ; 14(8): 1465-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25849953

RESUMO

Resistance to chemotherapy, molecular targeted therapy as well as radiation therapy is a major obstacle for cancer treatment. Cancer resistance may be exerted through multiple different mechanisms which may be orchestrated as observed in multidrug resistance (MDR). Cancer resistance may be intrinsic or acquired and often leaves patients without any treatment options. Strategies for alternative treatment modalities for resistant cancer are therefore highly warranted. Photochemical internalization (PCI) is a technology for cytosolic delivery of macromolecular therapeutics based on the principles of photodynamic therapy (PDT). The present report reviews the current knowledge of PCI of therapy-resistant cancers. In summary, PCI may be able to circumvent several of the major mechanisms associated with resistance towards chemotherapeutics including increased expression of drug efflux pumps, altered intracellular drug distribution and increased ROS scavenging. Current data also suggest PCI of targeted toxins as highly effective in cancers resistant to clinically available targeted therapy such as monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). PCI may therefore, in general, represent a future treatment option for cancers resistant to other therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Humanos , Neoplasias/fisiopatologia
2.
Lasers Surg Med ; 43(7): 721-33, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22057500

RESUMO

Photochemical internalization (PCI) is a method for intracellular delivery of hydrophilic macromolecular drugs with intracellular targets as well as other drugs with limited ability to penetrate cellular membranes. Such drugs enter cells by means of endocytosis and are to a large extent degraded by hydrolytic enzymes in the lysosomes unless they possess a mechanism for cytosolic translocation. PCI is based on photodynamic therapy (PDT) specifically targeting the endosomes and lysosomes of the cells, so that the drugs in these vesicles can escape into the cytosol from where they can reach their targets. The preferential retention of the photosensitizer (PS) in tumor tissue in combination with controlled light delivery makes PCI relatively selective for cancer tissue. The tumor specificity of PCI can be further increased by delivery of drugs that selectively target the tumors. Indeed, this has been shown by PCI delivery of several targeted protein toxins. Targeted protein toxins may be regarded as ideal drugs for PCI delivery, and may represent the clinical future for the PCI technology.


Assuntos
Antineoplásicos/administração & dosagem , Imunotoxinas/administração & dosagem , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Endossomos/efeitos dos fármacos , Humanos , Imunotoxinas/farmacocinética , Imunotoxinas/uso terapêutico , Lisossomos/efeitos dos fármacos , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/farmacocinética , Substâncias Macromoleculares/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia
3.
Nat Commun ; 12(1): 6427, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741021

RESUMO

HER2 is a predictive biomarker for HER2-targeted therapeutics. For antibody-drug conjugates (ADCs; e.g., trastuzumab emtansine (T-DM1)), HER2 is utilized as a transport gate for cytotoxic agents into the cell. ADC biomarkers may therefore be more complex, also reflecting the intracellular drug transport. Here we report on a positive correlation between the early endosome marker RAB5A and T-DM1 sensitivity in five HER2-positive cell lines. Correlation between RAB5A expression and T-DM1 sensitivity is confirmed in breast cancer patients treated with trastuzumab emtansine/pertuzumab in the I-SPY2 trial (NCT01042379), but not in the trastuzumab/paclitaxel control arm. The clinical correlation is further verified in patients from the KAMILLA trial (NCT01702571). In conclusion, our results suggest RAB5A as a predictive biomarker for T-DM1 response and outline proteins involved in endocytic trafficking as predictive biomarkers for ADCs.


Assuntos
Ado-Trastuzumab Emtansina/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Trastuzumab/uso terapêutico , Proteínas rab5 de Ligação ao GTP/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Proteínas rab5 de Ligação ao GTP/genética
4.
Toxins (Basel) ; 12(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823678

RESUMO

Advances in recombinant DNA technology have opened up new possibilities of exploiting toxic proteins for therapeutic purposes. Bringing forth these protein toxins from the bench to the bedside strongly depends on the availability of production methods that are reproducible, scalable and comply with good manufacturing practice (GMP). The type I ribosome-inhibiting protein, gelonin, has great potential as an anticancer drug, but is sequestrated in endosomes and lysosomes. This can be overcome by combination with photochemical internalization (PCI), a method for endosomal drug release. The combination of gelonin-based drugs and PCI represents a tumor-targeted therapy with high precision and efficiency. The aim of this study was to produce recombinant gelonin (rGel) at high purity and quantity using an automated liquid chromatography system. The expression and purification process was documented as highly efficient (4.4 mg gelonin per litre induced culture) and reproducible with minimal loss of target protein (~50% overall yield compared to after initial immobilized metal affinity chromatography (IMAC)). The endotoxin level of 0.05-0.09 EU/mg was compatible with current standards for parenteral drug administration. The automated system provided a consistent output with minimal human intervention and close monitoring of each purification step enabled optimization of both yield and purity of the product. rGel was shown to have equivalent biological activity and cytotoxicity, both with and without PCI-mediated delivery, as rGelref produced without an automated system. This study presents a highly refined and automated manufacturing procedure for recombinant gelonin at a quantity and quality sufficient for preclinical evaluation. The methods established in this report are in compliance with high quality standards and compose a solid platform for preclinical development of gelonin-based drugs.


Assuntos
Cromatografia Líquida/métodos , Proteínas Inativadoras de Ribossomos Tipo 1/biossíntese , Antineoplásicos Fitogênicos/biossíntese , Automação , Linhagem Celular , Humanos , Proteínas de Plantas/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Toxinas Biológicas/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa