Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 98(2): 1273-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25529417

RESUMO

The production of fermented milk products has increased worldwide during the last decade and is expected to continue to increase during the coming decade. The quality of these products may be optimized through breeding practices; however, the relations between cow genetics and technological properties of acid milk gels are not fully known. Therefore, the aim of this study was to identify chromosomal regions affecting acid-induced coagulation properties and possible candidate genes. Skim milk samples from 377 Swedish Red cows were rheologically analyzed for acid-induced coagulation properties using low-amplitude oscillation measurements. The resulting traits, including gel strength, coagulation time, and yield stress, were used to conduct a genome-wide association study. Single nucleotide polymorphisms (SNP) were identified using the BovineHD SNPChip (Illumina Inc., San Diego, CA), resulting in almost 621,000 segregating markers. The genome was scanned for putative quantitative trait loci (QTL) regions, haplotypes based on highly associated SNP were inferred, and the additive genetic effects of haplotypes within each QTL region were analyzed using mixed models. A total of 8 genomic regions were identified, with large effects of the significant haplotype explaining between 4.8 and 9.8% of the phenotypic variance of the studied traits. One major QTL was identified to overlap between gel strength and yield stress, the QTL identified with the most significant SNP closest to the gene coding for κ-casein (CSN3). In addition, a chromosome-wide significant region affecting yield stress on BTA 11 was identified to be colocated with PAEP, coding for ß-lactoglobulin. Furthermore, the coagulation properties of the genetic variants within the 2 genes were compared with the coagulation properties identified by the patterns of the haplotypes within the regions, and it was discovered that the haplotypes were more diverse and in one case slightly better at explaining the phenotypic variance. Besides these significant QTL comprising the 2 milk proteins, 3 additional genes are proposed as possible candidates, namely RAB22A, CDH13, and STAT1, and all have previously been found to be expressed in the mammary gland. To our knowledge, this is the first attempt to map QTL regions for acid-induced coagulation properties.


Assuntos
Bovinos/genética , Géis/química , Leite/química , Reologia , Animais , Cruzamento , Caseínas/genética , Mapeamento Cromossômico/veterinária , Produtos Fermentados do Leite/química , Feminino , Variação Genética , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Haplótipos/genética , Lactoglobulinas/genética , Proteínas do Leite/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Viscosidade
2.
J Dairy Sci ; 97(6): 3866-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24704225

RESUMO

In selecting cows for higher milk yields and milk quality, it is important to understand how these traits are affected by the bovine genome. The major milk proteins exhibit genetic polymorphism and these genetic variants can serve as markers for milk composition, milk production traits, and technological properties of milk. The aim of this study was to investigate the relationships between casein (CN) genetic variants and detailed protein composition in Swedish and Danish dairy milk. Milk and DNA samples were collected from approximately 400 individual cows each of 3 Scandinavian dairy breeds: Swedish Red (SR), Danish Holstein (DH), and Danish Jersey (DJ). The protein profile with relative concentrations of α-lactalbumin, ß-lactoglobulin, and α(S1)-, α(S2)-, κ-, and ß-CN was determined for each milk sample using capillary zone electrophoresis. The genetic variants of the α(S1)- (CSN1S1), ß- (CSN2), and κ-CN (CSN3) genes for each cow were determined using TaqMan SNP genotyping assays (Applied Biosystems, Foster City, CA). Univariate statistical models were used to evaluate the effects of composite genetic variants, α(S1)-ß-κ-CN, on the protein profile. The 3 studied Scandinavian breeds differed from each other regarding CN genotypes, with DH and SR having similar genotype frequencies, whereas the genotype frequencies in DJ differed from the other 2 breeds. The similarities in genotype frequencies of SR and DH and differences compared with DJ were also seen in milk production traits, gross milk composition, and protein profile. Frequencies of the most common composite α(S1)-ß-κ-CN genotype BB/A(2)A(2)/AA were 30% in DH and 15% in SR, and cows that had this genotype gave milk with lower relative concentrations of κ- and ß-CN and higher relative concentrations of αS-CN, than the majority of the other composite genotypes in SR and DH. The effect of composite genotypes on relative concentrations of the milk proteins was not as pronounced in DJ. The present work suggests that a higher frequency of BB/A(1)A(2)/AB, together with a decrease in BB/A(2)A(2)/AA, could have positive effects on DH and SR milk regarding, for example, the processing of cheese.


Assuntos
Caseínas/genética , Bovinos/genética , Proteínas do Leite/genética , Leite/química , Polimorfismo Genético , Animais , Caseínas/metabolismo , Bovinos/metabolismo , Dinamarca , Feminino , Genótipo , Lactalbumina/genética , Lactoglobulinas/genética , Lactoglobulinas/metabolismo , Proteínas do Leite/análise , Proteínas do Leite/metabolismo , Especificidade da Espécie , Suécia
3.
J Dairy Sci ; 96(8): 4830-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23746587

RESUMO

Substantial variation in milk coagulation properties has been observed among dairy cows. Consequently, raw milk from individual cows and breeds exhibits distinct coagulation capacities that potentially affect the technological properties and milk processing into cheese. This variation is largely influenced by protein composition, which is in turn affected by underlying genetic polymorphisms in the major milk proteins. In this study, we conducted a large screening on 3 major Scandinavian breeds to resolve the variation in milk coagulation traits and the frequency of milk with impaired coagulation properties (noncoagulation). In total, individual coagulation properties were measured on morning milk collected from 1,299 Danish Holstein (DH), Danish Jersey (DJ), and Swedish Red (SR) cows. The 3 breeds demonstrated notable interbreed differences in coagulation properties, with DJ cows exhibiting superior coagulation compared with the other 2 breeds. In addition, milk samples from 2% of DH and 16% of SR cows were classified as noncoagulating. Furthermore, the cows were genotyped for major genetic variants in the αS1- (CSN1S1), ß- (CSN2), and κ-casein (CSN3) genes, revealing distinct differences in variant frequencies among breeds. Allele I of CSN2, which had not formerly been screened in such a high number of cows in these Scandinavian breeds, showed a frequency around 7% in DH and DJ, but was not detected in SR. Genetic polymorphisms were significantly associated with curd firming rate and rennet coagulation time. Thus, CSN1S1 C, CSN2 B, and CSN3 B positively affected milk coagulation, whereas CSN2 A(2), in particular, had a negative effect. In addition to the influence of individual casein genes, the effects of CSN1S1-CSN2-CSN3 composite genotypes were also examined, and revealed strong associations in all breeds, which more or less reflected the single gene results. Overall, milk coagulation is under the influence of additive genetic variation. Optimal milk for future cheese production can be ensured by monitoring the frequency of unfavorable variants and thus preventing an increase in the number of cows producing milk with impaired coagulation. Selective breeding for variants associated with superior milk coagulation can potentially increase raw milk quality and cheese yield in all 3 Scandinavian breeds.


Assuntos
Caseínas/genética , Bovinos/genética , Leite/metabolismo , Animais , Tecnologia de Alimentos/métodos , Frequência do Gene/genética , Variação Genética/genética , Genótipo , Leite/normas , Polimorfismo Genético/genética , Reologia
4.
J Anim Sci ; 94(4): 1365-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27135996

RESUMO

Rennet-induced milk coagulation is an important trait for cheese production. Recent studies have reported an alarming frequency of cows producing poorly coagulating milk unsuitable for cheese production. Several genetic factors are known to affect milk coagulation, including variation in the major milk proteins; however, recent association studies indicate genetic effects from other genomic regions as well. The aim of this study was to detect genetic variation affecting milk coagulation properties, measured as curd-firming rate (CFR) and milk pH. This was achieved by examining allele frequency differences between pooled whole-genome sequences of phenotypically extreme samples (pool-seq).. Curd-firming rate and raw milk pH were measured for 415 Danish Holstein cows, and each animal was sequenced at low coverage. Pools were created containing whole genome sequence reads from samples with "extreme" values (high or low) for both phenotypic traits. A total of 6,992,186 and 5,295,501 SNP were assessed in relation to CFR and milk pH, respectively. Allele frequency differences were calculated between pools and 32 significantly different SNP were detected, 1 for milk pH and 31 for CFR, of which 19 are located on chromosome 6. A total of 9 significant SNP, which were selected based on the possible function of proximal candidate genes, were genotyped in the entire sample set ( = 415) to test for an association. The most significant SNP was located proximal to , explaining 33% of the phenotypic variance. , coding for κ-casein, is the most studied in relation to milk coagulation due to its position on the surface of the casein micelles and the direct involvement in milk coagulation. Three additional SNP located on chromosome 6 showed significant associations explaining 7, 3.6, and 1.3% of the phenotypic variance of CFR. The significant SNP on chromosome 6 were shown to be in linkage disequilibrium with the SNP peaking proximal to ; however, after accounting for the genotype of the peak SNP within this QTL, significant effects (-value < 0.1) could still be detected for 2 of the SNP accounting for 2 and 1% of the phenotypic variance. These 2 interesting SNP were located within introns or proximal to the candidate genes-solute carrier family 4 (sodium bicarbonate cotransporter), member 4 () and LIM and calponin homology domains 1 (), respectively-making them interesting targets for further analysis.


Assuntos
Bovinos/genética , Proteínas do Leite/metabolismo , Leite/química , Animais , Caseínas/metabolismo , Feminino , Frequência do Gene , Genoma , Genômica , Genótipo , Concentração de Íons de Hidrogênio , Desequilíbrio de Ligação , Proteínas do Leite/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa