Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Nat Immunol ; 20(7): 902-914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209404

RESUMO

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.


Assuntos
Rim/imunologia , Nefrite Lúpica/imunologia , Biomarcadores , Biópsia , Análise por Conglomerados , Biologia Computacional/métodos , Células Epiteliais/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Interferons/metabolismo , Rim/metabolismo , Rim/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Anotação de Sequência Molecular , Células Mieloides/imunologia , Células Mieloides/metabolismo , Análise de Célula Única , Transcriptoma
3.
Nat Immunol ; 18(2): 152-160, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992404

RESUMO

Autoimmune diseases affect 7.5% of the US population, and they are among the leading causes of death and disability. A notable feature of many autoimmune diseases is their greater prevalence in females than in males, but the underlying mechanisms of this have remained unclear. Through the use of high-resolution global transcriptome analyses, we demonstrated a female-biased molecular signature associated with susceptibility to autoimmune disease and linked this to extensive sex-dependent co-expression networks. This signature was independent of biological age and sex-hormone regulation and was regulated by the transcription factor VGLL3, which also had a strong female-biased expression. On a genome-wide level, VGLL3-regulated genes had a strong association with multiple autoimmune diseases, including lupus, scleroderma and Sjögren's syndrome, and had a prominent transcriptomic overlap with inflammatory processes in cutaneous lupus. These results identified a VGLL3-regulated network as a previously unknown inflammatory pathway that promotes female-biased autoimmunity. They demonstrate the importance of studying immunological processes in females and males separately and suggest new avenues for therapeutic development.


Assuntos
Redes Reguladoras de Genes , Queratinócitos/fisiologia , Lúpus Eritematoso Cutâneo/genética , Escleroderma Sistêmico/genética , Fatores Sexuais , Síndrome de Sjogren/genética , Pele/patologia , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Fatores de Transcrição/genética , Transcriptoma , Adulto Jovem
4.
Artigo em Inglês | MEDLINE | ID: mdl-39089334

RESUMO

BACKGROUND: Palmoplantar pustulosis (PPP) is an inflammatory disease characterized by relapsing eruptions of neutrophil-filled, sterile pustules on the palms and soles that can be clinically difficult to differentiate from non-pustular palmoplantar psoriasis (palmPP) and dyshidrotic palmoplantar eczema (DPE). OBJECTIVE: We sought to identify overlapping and unique PPP, palmPP, and DPE drivers to provide molecular insight into their pathogenesis. METHODS: We performed bulk RNA sequencing of lesional PPP (n = 33), palmPP (n = 5), and DPE (n = 28) samples, as well as 5 healthy nonacral and 10 healthy acral skin samples. RESULTS: Acral skin showed a unique immune environment, likely contributing to a unique niche for palmoplantar inflammatory diseases. Compared to healthy acral skin, PPP, palmPP, and DPE displayed a broad overlapping transcriptomic signature characterized by shared upregulation of proinflammatory cytokines (TNF, IL-36), chemokines, and T-cell-associated genes, along with unique disease features of each disease state, including enriched neutrophil processes in PPP and to a lesser extent in palmPP, and lipid antigen processing in DPE. Strikingly, unsupervised clustering and trajectory analyses demonstrated divergent inflammatory profiles within the 3 disease states. These identified putative key upstream immunologic switches, including eicosanoids, interferon responses, and neutrophil degranulation, contributing to disease heterogeneity. CONCLUSION: A molecular overlap exists between different inflammatory palmoplantar diseases that supersedes clinical and histologic assessment. This highlights the heterogeneity within each condition, suggesting limitations of current disease classification and the need to move toward a molecular classification of inflammatory acral diseases.

5.
J Am Soc Nephrol ; 34(5): 895-908, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749126

RESUMO

SIGNIFICANCE STATEMENT: Polymorphisms of HLA genes may confer susceptibility to acute tubulointerstitial nephritis (ATIN), but small sample sizes and candidate gene design have hindered their investigation. The first genome-wide association study of ATIN identified two significant loci, risk haplotype DRB1*14-DQA1*0101-DQB1*0503 (DR14 serotype) and protective haplotype DRB1*1501-DQA1*0102-DQB1*0602 (DR15 serotype), with amino acid position 60 in the peptide-binding groove P10 of HLA-DR ß 1 key. Risk alleles were shared among different causes of ATIN and HLA genotypes associated with kidney injury and immune therapy response. HLA alleles showed the strongest association. The findings suggest that a genetically conferred risk of immune dysregulation is part of the pathogenesis of ATIN. BACKGROUND: Acute tubulointerstitial nephritis (ATIN) is a rare immune-related disease, accounting for approximately 10% of patients with unexplained AKI. Previous elucidation of the relationship between genetic factors that contribute to its pathogenesis was hampered because of small sample sizes and candidate gene design. METHODS: We undertook the first two-stage genome-wide association study and meta-analysis involving 544 kidney biopsy-defined patients with ATIN and 2346 controls of Chinese ancestry. We conducted statistical fine-mapping analysis, provided functional annotations of significant variants, estimated single nucleotide polymorphism (SNP)-based heritability, and checked genotype and subphenotype correlations. RESULTS: Two genome-wide significant loci, rs35087390 of HLA-DQA1 ( P =3.01×10 -39 ) on 6p21.32 and rs2417771 of PLEKHA5 on 12p12.3 ( P =2.14×10 -8 ), emerged from the analysis. HLA imputation using two reference panels suggested that HLA-DRB1*14 mainly drives the HLA risk association . HLA-DRB1 residue 60 belonging to pocket P10 was the key amino acid position. The SNP-based heritability estimates with and without the HLA locus were 20.43% and 10.35%, respectively. Different clinical subphenotypes (drug-related or tubulointerstitial nephritis and uveitis syndrome) seemed to share the same risk alleles. However, the HLA risk genotype was associated with disease severity and response rate to immunosuppressive therapy. CONCLUSIONS: We identified two candidate genome regions associated with susceptibility to ATIN. The findings suggest that a genetically conferred risk of immune dysregulation is involved in the pathogenesis of ATIN.


Assuntos
Estudo de Associação Genômica Ampla , Nefrite Intersticial , Humanos , Cadeias HLA-DRB1/genética , Nefrite Intersticial/genética , Genótipo , Cadeias alfa de HLA-DQ/genética , Haplótipos , Alelos , Predisposição Genética para Doença
6.
Kidney Int ; 104(3): 562-576, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414396

RESUMO

Multiple genome-wide association studies (GWASs) have reproducibly identified the MTMR3/HORMAD2/LIF/OSM locus to be associated with IgA nephropathy (IgAN). However, the causal variant(s), implicated gene(s), and altered mechanisms remain poorly understood. Here, we performed fine-mapping analyses based on GWAS datasets encompassing 2762 IgAN cases and 5803 control individuals, and identified rs4823074 as the candidate causal variant that intersects the MTMR3 promoter in B-lymphoblastoid cells. Mendelian randomization studies suggested the risk allele may modulate disease susceptibility by affecting serum IgA levels through increased MTMR3 expression. Consistently, elevated MTMR3 expression in peripheral blood mononuclear cells was observed in patients with IgAN. Further mechanistic studies in vitro demonstrated that MTMR3 increased IgA production dependent upon its phosphatidylinositol 3-phosphate binding domain. Moreover, our study provided the in vivo functional evidence that Mtmr3-/- mice exhibited defective Toll Like Receptor 9-induced IgA production, glomerular IgA deposition, as well as mesangial cell proliferation. RNA-seq and pathway analyses showed that MTMR3 deficiency resulted in an impaired intestinal immune network for IgA production. Thus, our results support the role of MTMR3 in IgAN pathogenesis by enhancing Toll Like Receptor 9-induced IgA immunity.


Assuntos
Glomerulonefrite por IGA , Animais , Camundongos , Alelos , Estudo de Associação Genômica Ampla , Glomerulonefrite por IGA/patologia , Imunoglobulina A , Leucócitos Mononucleares/metabolismo , Receptor Toll-Like 9 , Humanos
7.
J Allergy Clin Immunol ; 149(4): 1329-1339, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857395

RESUMO

BACKGROUND: Prurigo nodularis (PN) is a debilitating, difficult-to-treat, intensely pruritic, chronic inflammatory skin disease characterized by hyperkeratotic skin nodules. The pathogenesis of PN is not well understood but is believed to involve cross talk between sensory nerve fibers, immune cells, and the epidermis. It is centered around the neuroimmune cytokine IL-31, driving an intractable itch-scratch cycle. OBJECTIVE: We sought to provide a comprehensive view of the transcriptomic changes in PN skin and characterize the mechanism of action of the anti-IL-31 receptor inhibitor nemolizumab. METHOD: RNA sequencing of biopsy samples obtained from a cohort of patients treated with the anti-IL-31 receptor inhibitor nemolizumab and taken at baseline and week 12. Generation and integration of patient data with RNA-Seq data generated from reconstructed human epidermis stimulated with IL-31 and other proinflammatory cytokines. RESULTS: Our results demonstrate that nemolizumab effectively decreases IL-31 responses in PN skin, leading to effective suppression of downstream inflammatory responses including TH2/IL-13 and TH17/IL-17 responses. This is accompanied by decreased keratinocyte proliferation and normalization of epidermal differentiation and function. Furthermore, our results demonstrate how transcriptomic changes associated with nemolizumab treatment correlate with improvement in lesions, pruritus, stabilization of extracellular matrix remodeling, and processes associated with cutaneous nerve function. CONCLUSION: These data demonstrate a broad response to IL-31 receptor inhibition with nemolizumab and confirm the critical upstream role of IL-31 in PN pathogenesis.


Assuntos
Prurigo , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Doença Crônica , Citocinas/uso terapêutico , Humanos , Prurigo/tratamento farmacológico , Prurigo/genética , Prurido/tratamento farmacológico , Prurido/genética , Transcriptoma
8.
Kidney Int ; 101(4): 779-792, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34952098

RESUMO

Increased podocyte detachment begins immediately after kidney transplantation and is associated with long-term allograft failure. We hypothesized that cell-specific transcriptional changes in podocytes and glomerular endothelial cells after transplantation would offer mechanistic insights into the podocyte detachment process. To test this, we evaluated cell-specific transcriptional profiles of glomerular endothelial cells and podocytes from 14 patients of their first-year surveillance biopsies with normal histology from low immune risk recipients with no post-transplant complications and compared these to biopsies of 20 healthy living donor controls. Glomerular endothelial cells from these surveillance biopsies were enriched for genes related to fluid shear stress, angiogenesis, and interferon signaling. In podocytes, pathways were enriched for genes in response to growth factor signaling and actin cytoskeletal reorganization but also showed evidence of podocyte stress as indicated by reduced nephrin (adhesion protein) gene expression. In parallel, transcripts coding for proteins required to maintain podocyte adherence to the underlying glomerular basement membrane were downregulated, including the major glomerular podocyte integrin α3 and the actin cytoskeleton-related gene synaptopodin. The reduction in integrin α3 protein expression in surveillance biopsies was confirmed by immunoperoxidase staining. The combined growth and stress response of patient allografts post-transplantation paralleled similar changes in a rodent model of nephrectomy-induced glomerular hypertrophic stress that progress to develop proteinuria and glomerulosclerosis with shortened kidney life span. Thus, even among patients with apparently healthy allografts with no detectable histologic abnormality including alloimmune injury, transcriptomic changes reflecting cell stresses are already set in motion that could drive hypertrophy-associated glomerular disease progression.


Assuntos
Nefropatias , Transplante de Rim , Podócitos , Células Endoteliais , Feminino , Membrana Basal Glomerular/patologia , Humanos , Hipertrofia , Integrina alfa3/metabolismo , Nefropatias/patologia , Transplante de Rim/efeitos adversos , Masculino , Podócitos/patologia
9.
FASEB J ; 35(5): e21467, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788970

RESUMO

Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are two common diabetic complications. However, their pathogenesis remains elusive and current therapies are only modestly effective. We evaluated genome-wide expression to identify pathways involved in DKD and DPN progression in db/db eNOS-/- mice receiving renin-angiotensin-aldosterone system (RAS)-blocking drugs to mimic the current standard of care for DKD patients. Diabetes and eNOS deletion worsened DKD, which improved with RAS treatment. Diabetes also induced DPN, which was not affected by eNOS deletion or RAS blockade. Given the multiple factors affecting DKD and the graded differences in disease severity across mouse groups, an automatic data analysis method, SOM, or self-organizing map was used to elucidate glomerular transcriptional changes associated with DKD, whereas pairwise bioinformatic analysis was used for DPN. These analyses revealed that enhanced gene expression in several pro-inflammatory networks and reduced expression of development genes correlated with worsening DKD. Although RAS treatment ameliorated the nephropathy phenotype, it did not alter the more abnormal gene expression changes in kidney. Moreover, RAS exacerbated expression of genes related to inflammation and oxidant generation in peripheral nerves. The graded increase in inflammatory gene expression and decrease in development gene expression with DKD progression underline the potentially important role of these pathways in DKD pathogenesis. Since RAS blockers worsened this gene expression pattern in both DKD and DPN, it may partly explain the inadequate therapeutic efficacy of such blockers.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/patologia , Neuropatias Diabéticas/patologia , Óxido Nítrico Sintase Tipo III/fisiologia , Transcriptoma , Proteínas ras/antagonistas & inibidores , Animais , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Mol Med ; 27(1): 99, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488619

RESUMO

BACKGROUND: We have found disruption of expression of major transcriptional regulators of circadian rhythm in the kidneys of several mouse models of lupus nephritis. Here we define the consequence of this disturbance with respect to circadian gene expression and renal homeostatic function in a mouse model of lupus nephritis. METHODS: Molecular profiling of kidneys from 47 young and 41 nephritic female NZB/W F1 mice was performed at 4 hourly intervals over a 24 h period. Disruption of major circadian transcriptional regulators was confirmed by qPCR. Molecular data was normalized and analyzed for rhythmicity using RAIN analysis. Serum aldosterone and glucose and urine sodium and potassium were measured at 4 hourly intervals in pre-nephritic and nephritic mice and blood pressure was measured every 4 h. Analyses were repeated after induction of complete remission of nephritis using combination cyclophosphamide and costimulatory blockade. RESULTS: We show a profound alteration of renal circadian rhythms in mice with lupus nephritis affecting multiple renal pathways. Using Cosinor analysis we identified consequent alterations of renal homeostasis and metabolism as well as blood pressure dipper status. This circadian dysregulation was partially reversed by remission induction therapy. CONCLUSIONS: Our studies indicate the role of inflammation in causing the circadian disruption and suggest that screening for loss of normal blood pressure dipping should be incorporated into LN management. The data also suggest a potential role for circadian agonists in the treatment of lupus nephritis.


Assuntos
Biomarcadores , Ritmo Circadiano/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Nefrite Lúpica/etiologia , Nefrite Lúpica/metabolismo , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Nefrite Lúpica/patologia , Camundongos , Transcriptoma
11.
J Immunol ; 202(7): 2121-2130, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30745462

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease in which 70% of patients experience disfiguring skin inflammation (grouped under the rubric of cutaneous lupus erythematosus [CLE]). There are limited treatment options for SLE and no Food and Drug Administration-approved therapies for CLE. Studies have revealed that IFNs are important mediators for SLE and CLE, but the mechanisms by which IFNs lead to disease are still poorly understood. We aimed to investigate how IFN responses in SLE keratinocytes contribute to development of CLE. A cohort of 72 RNA sequencing samples from 14 individuals (seven SLE and seven healthy controls) were analyzed to study the transcriptomic effects of type I and type II IFNs on SLE versus control keratinocytes. In-depth analysis of the IFN responses was conducted. Bioinformatics and functional assays were conducted to provide implications for the change of IFN response. A significant hypersensitive response to IFNs was identified in lupus keratinocytes, including genes (IFIH1, STAT1, and IRF7) encompassed in SLE susceptibility loci. Binding sites for the transcription factor PITX1 were enriched in genes that exhibit IFN-sensitive responses. PITX1 expression was increased in CLE lesions based on immunohistochemistry, and by using small interfering RNA knockdown, we illustrated that PITX1 was required for upregulation of IFN-regulated genes in vitro. SLE patients exhibit increased IFN signatures in their skin secondary to increased production and a robust, skewed IFN response that is regulated by PITX1. Targeting these exaggerated pathways may prove to be beneficial to prevent and treat hyperinflammatory responses in SLE skin.


Assuntos
Regulação da Expressão Gênica/imunologia , Interferons/imunologia , Queratinócitos/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Fatores de Transcrição Box Pareados/imunologia , Adulto , Feminino , Humanos , Masculino
12.
J Environ Manage ; 284: 112043, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607548

RESUMO

Environmental empowering to control resource consumption and environmental impacts is critical to engage citizens to adopt more sustainable habits. This study demonstrates the potential benefits of innovative approaches based on sustainability indicators towards a low-carbon economy. A methodology to measure and promote sustainability in schools has been proposed and evaluated, aiming at showing the environmental performance and informing of potential environmental savings. The methodology, titled ClimACT, has two main purposes: measuring the environmental performance of schools through a school sustainability index based on measurable indicators in the areas of transport, procurement, green spaces, indoor air quality, energy, water and waste; and encouraging students, teachers and families towards an energy-efficient and low-carbon pathway through a structural procedure based on roles, activities and progress evaluation. The approach, applied to 39 pilot schools from Portugal, Spain, France and Gibraltar, achieved promising and encouraging results. All schools deployed the methodology successfully, achieving measurable environmental benefits in 95% of cases, with an average improvement of 10% in the global performance of schools after one year. Moreover, the 5112 surveys applied to school communities, before and after the methodology implementation, highlighted how the sustainable indicators had a significant influence on the daily lives of families, leading to improvements of their behaviour, with an average increase of 20% in indicators regarding good practices in transport, energy, water, waste and citizenship. The environmental empowering through measurable indicators is a step forward a low-carbon economy. This methodology is open and adaptable to all sectors and requirements.


Assuntos
Carbono , Instituições Acadêmicas , França , Humanos , Portugal , Espanha
13.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038424

RESUMO

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , SARS-CoV-2/metabolismo , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19/complicações , COVID-19/virologia , Estudos de Casos e Controles , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
14.
Ann Rheum Dis ; 77(11): 1653-1664, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30021804

RESUMO

OBJECTIVE: Skin inflammation and photosensitivity are common in patients with cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE), yet little is known about the mechanisms that regulate these traits. Here we investigate the role of interferon kappa (IFN-κ) in regulation of type I interferon (IFN) and photosensitive responses and examine its dysregulation in lupus skin. METHODS: mRNA expression of type I IFN genes was analysed from microarray data of CLE lesions and healthy control skin. Similar expression in cultured primary keratinocytes, fibroblasts and endothelial cells was analysed via RNA-seq. IFNK knock-out (KO) keratinocytes were generated using CRISPR/Cas9. Keratinocytes stably overexpressing IFN-κ were created via G418 selection of transfected cells. IFN responses were assessed via phosphorylation of STAT1 and STAT2 and qRT-PCR for IFN-regulated genes. Ultraviolet B-mediated apoptosis was analysed via TUNEL staining. In vivo protein expression was assessed via immunofluorescent staining of normal and CLE lesional skin. RESULTS: IFNK is one of two type I IFNs significantly increased (1.5-fold change, false discovery rate (FDR) q<0.001) in lesional CLE skin. Gene ontology (GO) analysis showed that type I IFN responses were enriched (FDR=6.8×10-04) in keratinocytes not in fibroblast and endothelial cells, and this epithelial-derived IFN-κ is responsible for maintaining baseline type I IFN responses in healthy skin. Increased levels of IFN-κ, such as seen in SLE, amplify and accelerate responsiveness of epithelia to IFN-α and increase keratinocyte sensitivity to UV irradiation. Notably, KO of IFN-κ or inhibition of IFN signalling with baricitinib abrogates UVB-induced apoptosis. CONCLUSION: Collectively, our data identify IFN-κ as a critical IFN in CLE pathology via promotion of enhanced IFN responses and photosensitivity. IFN-κ is a potential novel target for UVB prophylaxis and CLE-directed therapy.


Assuntos
Epiderme/imunologia , Interferon Tipo I/biossíntese , Lúpus Eritematoso Cutâneo/complicações , Transtornos de Fotossensibilidade/etiologia , Adulto , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Queratinócitos/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Masculino , Pessoa de Meia-Idade , Transtornos de Fotossensibilidade/imunologia , RNA Mensageiro/genética , Pele/imunologia , TYK2 Quinase/imunologia , Regulação para Cima/imunologia
15.
Am J Pathol ; 187(12): 2799-2810, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935578

RESUMO

Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN. Nephrotoxic serum nephritis was induced in wild-type (WT) and ubiquitin-binding deficient ABIN1[D485N] mice, and renal pathophysiology and glomerular inflammatory phenotypes were assessed. Proteinuria was also measured in ABIN1[D485N] mice transplanted with WT mouse bone marrow. Inflammatory activation of ABIN1[D472N] (D485N homolog) cultured human-derived podocytes, and interaction with primary human neutrophils were also assessed. Disruption of ABIN1 function exacerbated proteinuria, podocyte injury, glomerular NF-κB activity, glomerular expression of inflammatory mediators, and glomerular recruitment and retention of neutrophils in antibody-mediated nephritis. Transplantation of WT bone marrow did not prevent the increased proteinuria in ABIN1[D845N] mice. Tumor necrosis factor-stimulated enhanced expression and secretion of NF-κB-targeted proinflammatory mediators in ABIN1[D472N] cultured podocytes compared with WT cells. Supernatants from ABIN1[D472N] podocytes accelerated chemotaxis of human neutrophils, and ABIN1[D472N] podocytes displayed a greater susceptibility to injurious morphologic findings induced by neutrophil granule contents. These studies define a novel role for ABIN1 dysfunction and NF-κB in mediating GN through proinflammatory activation of podocytes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glomerulonefrite/patologia , NF-kappa B/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Glomerulonefrite/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Mutantes
16.
J Am Soc Nephrol ; 28(10): 2961-2972, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28646076

RESUMO

IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type-specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell-positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell-positive standard genes. Additionally, patient clinical parameters (serum creatinine values and eGFRs) significantly correlated with Z scores derived from the expression profile of mesangial cell-positive standard genes. Among patients grouped according to Oxford MEST score, patients with segmental glomerulosclerosis had a significantly higher mesangial cell-positive standard gene Z score than patients without segmental glomerulosclerosis. By investigating mesangial cell proteomics and glomerular transcriptomics, we identified 22 common pathways induced in mesangial cells by gd-IgA, most of which mediate inflammation. The genes, proteins, and corresponding pathways identified provide novel insights into the pathophysiologic mechanisms leading to IgAN.


Assuntos
Glomerulonefrite por IGA/metabolismo , Células Mesangiais/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Glomerulonefrite por IGA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma , Transcriptoma
17.
Clin Immunol ; 185: 109-118, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27534926

RESUMO

Lupus disease and its complications including lupus nephritis (LN) are very disabling and significantly impact the quality of life and longevity of patients. Broadly immunosuppressive treatments do not always provide the expected clinical benefits and have significant side effects that contribute to patient morbidity. In the era of systems biology, new strategies are being deployed integrating diverse sources of information (molecular and clinical) so as to identify individual disease specificities and select less aggressive treatments. In this review, we summarize integrative approaches linking molecular disease profiles (mainly tissue transcriptomics) and clinical phenotypes. The main goals are to better understand the pathogenesis of lupus nephritis, to identify the risk factors for renal flare and to find the predictors of both short and long-term clinical outcome. Identification of common key drivers and additional patient-specific key drivers can open the door to improved and individualized therapy to prevent and treat LN.


Assuntos
Nefrite Lúpica/genética , Animais , Genótipo , Humanos , Rim , Nefrite Lúpica/complicações , Fenótipo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética
18.
Rheumatology (Oxford) ; 56(11): 1970-1981, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968684

RESUMO

Objectives: SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Methods: Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-ß. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. Results: SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-ß. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Conclusion: Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-ß-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Queratinócitos/citologia , Escleroderma Sistêmico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Adulto , Idoso , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Meios de Cultivo Condicionados , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Fibrose , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Queratinócitos/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Esclerodermia Difusa , Esclerodermia Localizada , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Pele/patologia , Regulação para Cima
19.
J Am Soc Nephrol ; 25(12): 2859-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24925725

RESUMO

Lupus nephritis is a manifestation of SLE resulting from glomerular immune complex deposition and inflammation. Lupus nephritis demonstrates familial aggregation and accounts for significant morbidity and mortality. We completed a meta-analysis of three genome-wide association studies of SLE to identify lupus nephritis-predisposing loci. Through genotyping and imputation, >1.6 million markers were assessed in 2000 unrelated women of European descent with SLE (588 patients with lupus nephritis and 1412 patients with lupus without nephritis). Tests of association were computed using logistic regression adjusting for population substructure. The strongest evidence for association was observed outside the MHC and included markers localized to 4q11-q13 (PDGFRA, GSX2; P=4.5×10(-7)), 16p12 (SLC5A11; P=5.1×10(-7)), 6p22 (ID4; P=7.4×10(-7)), and 8q24.12 (HAS2, SNTB1; P=1.1×10(-6)). Both HLA-DR2 and HLA-DR3, two well established lupus susceptibility loci, showed evidence of association with lupus nephritis (P=0.06 and P=3.7×10(-5), respectively). Within the class I region, rs9263871 (C6orf15-HCG22) had the strongest evidence of association with lupus nephritis independent of HLA-DR2 and HLA-DR3 (P=8.5×10(-6)). Consistent with a functional role in lupus nephritis, intra-renal mRNA levels of PDGFRA and associated pathway members showed significant enrichment in patients with lupus nephritis (n=32) compared with controls (n=15). Results from this large-scale genome-wide investigation of lupus nephritis provide evidence of multiple biologically relevant lupus nephritis susceptibility loci.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Antígeno HLA-DR2/genética , Antígeno HLA-DR3/genética , Humanos , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , População Branca/genética , Adulto Jovem
20.
J Immunol ; 189(2): 988-1001, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22723521

RESUMO

Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these preclinical models. In this study, we used an unbiased transcriptional network approach to define, in molecular terms, similarities and differences among three lupus models and human LN. Genome-wide gene-expression networks were generated using natural language processing and automated promoter analysis and compared across species via suboptimal graph matching. The three murine models and human LN share both common and unique features. The 20 commonly shared network nodes reflect the key pathologic processes of immune cell infiltration/activation, endothelial cell activation/injury, and tissue remodeling/fibrosis, with macrophage/dendritic cell activation as a dominant cross-species shared transcriptional pathway. The unique nodes reflect differences in numbers and types of infiltrating cells and degree of remodeling among the three mouse strains. To define mononuclear phagocyte-derived pathways in human LN, gene sets activated in isolated NZB/W renal mononuclear cells were compared with human LN kidney profiles. A tissue compartment-specific macrophage-activation pattern was seen, with NF-κB1 and PPARγ as major regulatory nodes in the tubulointerstitial and glomerular networks, respectively. Our study defines which pathologic processes in murine models of LN recapitulate the key transcriptional processes active in human LN and suggests that there are functional differences between mononuclear phagocytes infiltrating different renal microenvironments.


Assuntos
Cruzamentos Genéticos , Modelos Animais de Doenças , Redes Reguladoras de Genes/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Transcrição Gênica/imunologia , Animais , Perfilação da Expressão Gênica , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/patologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Nefrite Lúpica/genética , Masculino , Camundongos , Camundongos Endogâmicos NZB , Nefrite Intersticial/genética , Nefrite Intersticial/imunologia , Nefrite Intersticial/patologia , Proteinúria/genética , Proteinúria/imunologia , Proteinúria/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa