Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 14(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131497

RESUMO

A remaining challenge in tissue engineering approaches is the in vitro vascularization of engineered constructs or tissues. Current approaches in engineered vascularized constructs are often limited in the control of initial vascular network geometry, which is crucial to ensure full functionality of these constructs with regard to cell survival, metabolic activity, and potential differentiation ability. Herein, the combination of 3D-printed poly-ε-caprolactone scaffolds via melt electrospinning writing with the cell-accumulation technique to enable the formation and control of capillary-like network structures is reported. The cell-accumulation technique is already proven itself to be a powerful tool in obtaining thick (50 µm) tissues and its main advantage is the rapid production of tissues and its ease of performance. However, the applied combination yields tissue thicknesses that are doubled, which is of outstanding importance for an improved handling of the scaffolds and the generation of clinically relevant sample volumes. Moreover, a correlation of increasing vascular endothelial growth factor secretion to hypoxic conditions with increasing pore sizes and an assessment of the formation of neovascular like structures are included.


Assuntos
Células Endoteliais/citologia , Animais , Materiais Biocompatíveis , Humanos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
2.
Nitric Oxide ; 41: 85-96, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24932545

RESUMO

Hydrogen sulfide (H2S) is an important signaling molecule with physiological endpoints similar to those of nitric oxide (NO). Growing interest in its physiological roles and pharmacological potential has led to large sets of contradictory data. The principle cause of these discrepancies can be the common neglect of some of the basic H2S chemistry. This study investigates how the experimental outcome when working with H2S depends on its source and dose and the methodology employed. We show that commercially available NaHS should be avoided and that traces of metal ions should be removed because these can reduce intramolecular disulfides and change protein structure. Furthermore, high H2S concentrations may lead to a complete inhibition of cell respiration, mitochondrial membrane potential depolarization and superoxide generation, which should be considered when discussing the biological effects observed upon treatment with high concentrations of H2S. In addition, we provide chemical evidence that H2S can directly react with superoxide. H2S is also capable of reducing cytochrome c(3+) with the concomitant formation of superoxide. H2S does not directly react with nitrite but with NO electrodes that detect H2S. In addition, H2S interferes with the Griess reaction and should therefore be removed from the solution by Cd(2+) or Zn(2+) precipitation prior to nitrite quantification. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) is reduced by H2S, and its use should be avoided in combination with H2S. All these constraints must be taken into account when working with H2S to ensure valid data.


Assuntos
Artefatos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Projetos de Pesquisa/normas , Linhagem Celular Tumoral , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/metabolismo , Humanos , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Imidazóis/química , Imidazóis/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/análise , Superóxidos/química , Superóxidos/metabolismo
3.
Adv Healthc Mater ; 8(7): e1801544, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30892836

RESUMO

Melt electrowriting (MEW) is an emerging additive manufacturing technology that direct-writes low-micron diameter fibers into 3D scaffolds with high porosities. Often, the polymers currently used for MEW are hydrophobic thermoplastics that induce unspecific protein adsorption and subsequent uncontrolled cell adhesion. Here are developed a coating strategy for MEW scaffolds based on six-arm star-shaped NCO-poly(ethylene oxide-stat-propylene oxide) (sP(EO-stat-PO)). This permanently hydrophilizes the PCL through the formation of a hydrogel coating and minimizes unspecific interactions with proteins and cells. It also provides the option of simultaneous covalent attachment of bioactive molecules through reaction with isocyanates before these are hydrolyzed. Furthermore, a photoactivatable chemical functionalization is introduced that is not dependent on the time-limited window of isocyanate chemistry. For this, photo-leucine is covalently immobilized into the sP(EO-stat-PO) layer, resulting in a photoactivatable scaffold that enables the binding of sterically demanding molecules at any timepoint after scaffold preparation and coating and is decoupled from the isocyanate chemistry. A successful biofunctionalization of MEW scaffolds via this strategy is demonstrated with streptavidin and collagen as examples. This hydrogel coating system is a generic one that introduces flexible specific and multiple surface functionalization, potentially for a spectrum of polymers made from different manufacturing processes.


Assuntos
Alicerces Teciduais/química , Adesão Celular , Colágeno/química , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Leucina/química , Lisina/análogos & derivados , Lisina/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Poliésteres/química , Polietilenos/química , Polipropilenos/química , Raios Ultravioleta
4.
Biofabrication ; 9(4): 044108, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28906257

RESUMO

This study investigates the use of allyl-functionalized poly(glycidol)s (P(AGE-co-G)) as a cytocompatible cross-linker for thiol-functionalized hyaluronic acid (HA-SH) and the optimization of this hybrid hydrogel as bioink for 3D bioprinting. The chemical cross-linking of gels with 10 wt.% overall polymer concentration was achieved by a UV-induced radical thiol-ene coupling between the thiol and allyl groups. The addition of unmodified high molecular weight HA (1.36 MDa) enabled the rheology to be tuned for extrusion-based bioprinting. The incorporation of additional HA resulted in hydrogels with a lower Young's modulus and a higher swelling ratio, especially in the first 24 h, but a comparable equilibrium swelling for all gels after 24 h. Embedding of human and equine mesenchymal stem cells (MSCs) in the gels and subsequent in vitro culture showed promising chondrogenic differentiation after 21 d for cells from both origins. Moreover, cells could be printed with these gels, and embedded hMSCs showed good cell survival for at least 21 d in culture. To achieve mechanically stable and robust constructs for the envisioned application in articular cartilage, the formulations were adjusted for double printing with thermoplastic poly(ε-caprolactone) (PCL).


Assuntos
Bioimpressão/métodos , Ácido Hialurônico/química , Hidrogéis/química , Poliésteres/química , Propilenoglicóis/química , Agrecanas/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Condrogênese , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Força Compressiva , Cavalos , Humanos , Tinta , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Impressão Tridimensional
5.
Adv Mater ; 29(44)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29044686

RESUMO

Bioprinting can be defined as the art of combining materials and cells to fabricate designed, hierarchical 3D hybrid constructs. Suitable materials, so called bioinks, have to comply with challenging rheological processing demands and rapidly form a stable hydrogel postprinting in a cytocompatible manner. Gelatin is often adopted for this purpose, usually modified with (meth-)acryloyl functionalities for postfabrication curing by free radical photopolymerization, resulting in a hydrogel that is cross-linked via nondegradable polymer chains of uncontrolled length. The application of allylated gelatin (GelAGE) as a thiol-ene clickable bioink for distinct biofabrication applications is reported. Curing of this system occurs via dimerization and yields a network with flexible properties that offer a wider biofabrication window than (meth-)acryloyl chemistry, and without additional nondegradable components. An in-depth analysis of GelAGE synthesis is conducted, and standard UV-initiation is further compared with a recently described visible-light-initiator system for GelAGE hydrogel formation. It is demonstrated that GelAGE may serve as a platform bioink for several biofabrication technologies by fabricating constructs with high shape fidelity via lithography-based (digital light processing) 3D printing and extrusion-based 3D bioprinting, the latter supporting long-term viability postprinting of encapsulated chondrocytes.


Assuntos
Gelatina/química , Bioimpressão , Hidrogéis , Impressão Tridimensional , Compostos de Sulfidrila , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa