Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Bioorg Med Chem ; 23(13): 3426-35, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25936260

RESUMO

A new series of selective PDE4D inhibitors has been designed and synthesized by replacing 3-methoxy group with 3-difluoromethoxy isoster moiety in our previously reported cathecolic structures. All compounds showed a good PDE4D3 inhibitory activity, most of them being inactive toward other PDE4 isoforms (PDE4A4, PDE4B2 and PDE4C2). Compound 3b, chosen among the synthesized compounds as the most promising in terms of inhibitory activity, selectivity and safety, showed an improved pharmacokinetic profile compared to its non fluorinated analogue. Spontaneous locomotor activity, assessed in an open field apparatus, showed that, differently from rolipram and diazepam, selective PDE4D inhibitors, such as compounds 3b, 5b and 7b, did not affect locomotion, whereas compound 1b showed a tendency to reduce the distance traveled and to prolong the immobility period, possibly due to a poor selectivity.


Assuntos
Catecóis/farmacocinética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Neurônios/efeitos dos fármacos , Nootrópicos/farmacocinética , Inibidores de Fosfodiesterase/farmacocinética , Animais , Catecóis/sangue , Catecóis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Diazepam/sangue , Diazepam/farmacocinética , Ensaios Enzimáticos , Expressão Gênica , Halogenação , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/efeitos dos fármacos , Neurônios/citologia , Neurônios/enzimologia , Nootrópicos/sangue , Nootrópicos/síntese química , Inibidores de Fosfodiesterase/sangue , Inibidores de Fosfodiesterase/síntese química , Rolipram/sangue , Rolipram/farmacocinética , Relação Estrutura-Atividade
2.
Pharmacol Res ; 81: 17-25, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24548822

RESUMO

Intestinal ischemia and reperfusion (I/R) is a potentially life-threatening disease, ensuing from various clinical conditions. Experimentally, either protective or detrimental roles have been attributed to 5-HT in the functional and morphological injury caused by mesenteric I/R. Recently, we proved the involvement of 5-HT2A receptors in the intestinal dysmotility and leukocyte recruitment induced by 45min occlusion of the superior mesenteric artery (SMA) followed by 24h reperfusion in mice. Starting from these premises, the aim of our present work was to investigate the role played by endogenous 5-HT in the same experimental model where 45min SMA clamping was followed by 5h reflow. To this end, we first observed that ischemic preconditioning before I/R injury (IPC+I/R) reverted the increase in 5-HT tissue content and in inflammatory parameters induced by I/R in mice. Second, the effects produced by intravenous administration of 5-HT1A ligands (partial agonist buspirone 10mgkg(-1), antagonist WAY100135 0.5-5mgkg(-1)), 5-HT2A antagonist sarpogrelate (10mgkg(-1)), 5-HT3 antagonist alosetron (0.1mgkg(-1)), 5-HT4 antagonist GR125487 (5mgkg(-1)) and 5-HT re-uptake inhibitor fluoxetine (10mgkg(-1)) on I/R-induced inflammatory response were investigated in I/R mice and compared to those obtained in sham-operated animals (S). Our results confirmed the significant role played by 5-HT2A receptors not only in the late but also in the early I/R-induced microcirculatory dysfunction and showed that blockade of 5-HT1A receptors protected against the intestinal leukocyte recruitment, plasma extravasation and reactive oxygen species formation triggered by SMA occlusion and reflow. The ability of α7 nicotinic receptor (α7nAchR) antagonist methyllycaconitine (5mgkg(-1)) to counteract the beneficial action provided by buspirone on I/R-induced neutrophil infiltration suggests that the anti-inflammatory effect produced by 5-HT1A receptor antagonism could be partly ascribed to the indirect activation of α7nAch receptors.


Assuntos
Intestinos/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Traumatismo por Reperfusão/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Serotonina/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Buspirona/farmacologia , Feminino , Heme Oxigenase-1/sangue , Interleucina-1beta/sangue , Mucosa Intestinal/metabolismo , Intestinos/patologia , Malondialdeído/metabolismo , Proteínas de Membrana/sangue , Camundongos , Antagonistas Nicotínicos/farmacologia , Peroxidase/metabolismo , Piperazinas/farmacologia , Traumatismo por Reperfusão/patologia , Fator de Necrose Tumoral alfa/sangue , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
3.
Bioorg Med Chem Lett ; 24(15): 3255-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24980056

RESUMO

The methyl group in cis stereochemical relationship with the basic chain of all pentatomic cyclic analogues of ACh is crucial for the agonist activity at mAChR. Among these only cevimeline (1) is employed in the treatment of xerostomia associated with Sjögren's syndrome. Here we demonstrated that, unlike 1,3-dioxolane derivatives, in the 1,4-dioxane series the methyl group is not essential for the activation of mAChR subtypes. Docking studies, using the crystal structures of human M2 and rat M3 receptors, demonstrated that the 5-methylene group of the 1,4-dioxane nucleus of compound 10 occupies the same lipophilic pocket as the methyl group of the 1,3-dioxolane 4.


Assuntos
Dioxanos/farmacologia , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M3/agonistas , Animais , Sítios de Ligação/efeitos dos fármacos , Dioxanos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Agonistas Muscarínicos/química , Ratos , Relação Estrutura-Atividade
4.
Life Sci ; 352: 122875, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38942359

RESUMO

The complex and dynamic environment of the gastrointestinal tract shapes one of the fastest renewing tissues in the human body, the intestinal epithelium. Considering the lack of human preclinical studies, reliable models that mimic the intestinal environment are increasingly explored. Patient-derived intestinal organoids are powerful tools that recapitulate in vitro many pathophysiological features of the human intestine. In this review, the possible applications of human intestinal organoids in different research fields are highlighted. From physiologically relevant to intestinal disease modeling, regenerative medicine, and toxicology studies, the potential of intestinal organoids will be here presented and discussed. Despite the remarkable opportunities offered, limitations related to ethical concerns, tissue collection, reproducibility, and methodologies may hinder the full exploitation of this cell-based model into high throughput studies and clinical practice. Currently, distinct approaches can be used to overcome the numerous challenges found along the way and to allow the full implementation of this ground-breaking technology.


Assuntos
Mucosa Intestinal , Organoides , Humanos , Organoides/citologia , Mucosa Intestinal/citologia , Medicina Regenerativa/métodos , Intestinos/citologia , Intestinos/fisiologia , Animais , Enteropatias/patologia , Modelos Biológicos
5.
ChemMedChem ; : e202400389, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923732

RESUMO

The correlation between the CCL20/CCR6 axis and autoimmune and non-autoimmune disorders is widely recognized. Inhibition of the CCL20-dependent cell migration represents therefore a promising approach for the treatment of many diseases, such as inflammatory bowel diseases and colorectal cancer. We report herein our efforts to explore the biologically relevant chemical space around the benzofuran scaffold of MR120, a modulator of the CCL20/CCR6 axis previously discovered by our group. A functional screening allowed us to identify C4 and C5-substituted derivatives as the most effective inhibitors of the CCL20-induced chemotaxis of human peripheral blood mononuclear cells (PBMC). Moreover, selected compounds (16 e and 24 b) also proved to potently inhibit the growth of different colon cancer cell lines, with cytotoxic/cytostatic and antiproliferative activity.

6.
Int J Antimicrob Agents ; 63(1): 107001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839715

RESUMO

OBJECTIVES: The aim of the project was to develop and characterise powders containing a probiotic (Lactiplantibacillus plantarum [Lpb. plantarum], Lacticaseibacillus rhamnosus, or Lactobacillus acidophilus) to be administered to the lung for the containment of pathogen growth in patients with lung infections. METHODS: The optimised spray drying process for the powder manufacturing was able to preserve viability of the bacteria, which decreased of only one log unit and was maintained up to 30 days. RESULTS: Probiotic powders showed a high respirability (42%-50% of particles had a size < 5 µm) suitable for lung deposition and were proven safe on A549 and Calu-3 cells up to a concentration of 107 colony-forming units/mL. The Lpb. plantarum adhesion to both cell lines tested was at least 10%. Surprisingly, Lpb. plantarum powder was bactericidal at a concentration of 106 colony-forming units/mL on P. aeruginosa, whereas the other two strains were bacteriostatic. CONCLUSION: This work represents a promising starting point to consider a probiotic inhalation powder a value in keeping the growth of pathogenic microflora in check during the antibiotic inhalation therapy suspension in cystic fibrosis treatment regimen. This approach could also be advantageous for interfering competitively with pathogenic bacteria and promoting the restoration of the healthy microbiota.


Assuntos
Lactobacillales , Probióticos , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Pós , Antibacterianos/farmacologia
7.
Eur J Pharmacol ; 945: 175613, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841282

RESUMO

Concerning the growing interest in the role played by the CCL20/CCR6 axis in IBD pathogenesis and in the search for novel anti-IBD small molecules, we have recently discovered the first small-molecule (MR120) endowed with protective action against TNBS-induced colitis and zymosan-induced peritonitis. This protective action occurs through interference with the CCL20/CCR6 signaling. The aim of the present work is to expand the preclinical investigation of MR120, evaluating its beneficial anti-inflammatory effect on a model of chronic colitis obtained by cyclically exposing C57BL/6 mice to 3% DSS. Subcutaneous administration of MR120 at 1 mg/kg, the same dose effective against acute inflammation, helped attenuate several systemic and local inflammatory responses induced by DSS. Besides significantly improving murine health conditions, MR120 counteracted mucosal macroscopic injury, the increase of colonic edema and neutrophils oxidative activity, and mitigated spleen enlargement, while not significantly lowering intestinal IL-6 concentration. Overall, repeated daily treatment with MR120 for approximately 30 days was well tolerated and showed moderate protection in a relevant model of chronic colitis, in line with the beneficial effect previously observed in acute models of intestinal inflammation. Although more potent analogues of MR120 will be needed to more fully evaluate their clinical translatability, the present work provides a valuable example of in vivo efficacy of CCL20/CCR6 modulators in a chronic model of IBD.


Assuntos
Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Intestinos/patologia , Camundongos Endogâmicos C57BL , Receptores CCR6
8.
Biochem Pharmacol ; 209: 115452, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792038

RESUMO

It is well demonstrated the key role of Eph-ephrin system, specifically of EphA2 receptor, in supporting tumor growth, invasion, metastasis and neovascularization. We previously identified FXR agonists as eligible antagonists of Eph-ephrin system. Herein we characterize new commercially available FXR (Farnesoid X Receptor) agonists as potential Eph ligands including Cilofexor, Nidufexor, Tropifexor, Turofexorate isopropyl and Vonafexor. Our exploration based on molecular modelling investigations and binding assays shows that Cilofexor binds specifically and reversibly to EphA2 receptor with a Ki value in the low micromolar range. Furthermore, Cilofexor interferes with the phosphorylation of EphA2 and the cell retraction and rounding in PC3 prostate cancer cells, both events depending on EphA2 activation. In conclusion, we can confirm that target hopping can be a successful approach to discover new moiety of protein-protein inhibitors.


Assuntos
Neoplasias da Próstata , Receptor EphA2 , Masculino , Humanos , Receptor EphA2/metabolismo , Efrina-A1/metabolismo , Ligação Proteica , Efrinas/metabolismo
9.
Pharmaceutics ; 15(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986883

RESUMO

This work illustrates the development of a dry inhalation powder of cyclosporine-A for the prevention of rejection after lung transplantation and for the treatment of COVID-19. The influence of excipients on the spray-dried powder's critical quality attributes was explored. The best-performing powder in terms of dissolution time and respirability was obtained starting from a concentration of ethanol of 45% (v/v) in the feedstock solution and 20% (w/w) of mannitol. This powder showed a faster dissolution profile (Weibull dissolution time of 59.5 min) than the poorly soluble raw material (169.0 min). The powder exhibited a fine particle fraction of 66.5% and an MMAD of 2.97 µm. The inhalable powder, when tested on A549 and THP-1, did not show cytotoxic effects up to a concentration of 10 µg/mL. Furthermore, the CsA inhalation powder showed efficiency in reducing IL-6 when tested on A549/THP-1 co-culture. A reduction in the replication of SARS-CoV-2 on Vero E6 cells was observed when the CsA powder was tested adopting the post-infection or simultaneous treatment. This formulation could represent a therapeutic strategy for the prevention of lung rejection, but is also a viable approach for the inhibition of SARS-CoV-2 replication and the COVID-19 pulmonary inflammatory process.

10.
J Neurosci Res ; 90(11): 2146-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22806643

RESUMO

Intestinal ischemia is a clinical emergency with high morbidity and mortality. We investigated whether activation of µ opioid receptor (µOR) protects from the inflammation induced by intestinal ischemia and reperfusion (I/R) in mice. Ischemia was induced by occlusion of the superior mesenteric artery (45 min), followed by reperfusion (5 hr). Sham-operated (SO) and normal (N) mice served as controls. Each group received subcutaneously 1) saline solution, 2) the µOR selective agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO; 0.01 mg kg(-1) ), 3) DAMGO and the selective µOR antagonist [H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2] (CTAP; 0.1 mg kg(-1) ), or 4) CTAP alone. I/R induced intestinal inflammation as indicated by histological damage and the significant increase in myeloperoxidase (MPO) activity, an index of tissue neutrophil accumulation. Tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) mRNA levels were also increased in I/R mice compared with SO. DAMGO significantly reduced tissue damage, MPO activity, and TNF-α mRNA levels in I/R, and these effects were reversed by CTAP. By contrast, DAMGO did not modify IL-10 mRNA levels or gastrointestinal transit. DAMGO's effects are receptor mediated and likely are due to activation of peripheral µORs, because it does not readily cross the blood-brain barrier. These findings suggest that activation of peripheral µOR protects from the inflammatory response induced by I/R through a pathway involving the proinflammatory cytokine TNF-α. Reduction of acute inflammation might prevent I/R complications, including motility impairment, which develop at a later stage of reperfusion and likely are due to inflammatory cell infiltrates.


Assuntos
Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Receptores Opioides mu/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Citocinas/biossíntese , Feminino , Inflamação/etiologia , Inflamação/patologia , Intestinos/irrigação sanguínea , Intestinos/patologia , Mesentério/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Eur J Med Chem ; 243: 114703, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067700

RESUMO

The CCL20/CCR6 axis is implicated in the migration of CCR6+ immune cells towards CCL20, its sole ligand, whose expression is increased during inflammatory processes and is known to play a pivotal role in triggering different autoimmune-mediated inflammatory diseases. Herein, we report a drug discovery effort focused on the development of a new pharmacological approach for the treatment of inflammatory bowel diseases (IBDs) based on small-molecule CCR6 antagonists. The most promising compound 1b was identified by combining in silico studies, sustainable chemistry and in vitro functional/targeted assays, and its efficacy was finally validated in a classic murine model of colitis (TNBS-induced) and in a model of peritonitis (zymosan-induced). These data provide the proof of principle that a pharmacological modulation of the CCL20/CCR6 axis may indeed represent the first step for the development of an orally bioavailable drug candidate for the treatment of IBD and, potentially, other diseases regulated by the CCL20/CCR6 axis.


Assuntos
Doenças Autoimunes , Doenças Inflamatórias Intestinais , Camundongos , Humanos , Animais , Receptores CCR6/metabolismo , Quimiocina CCL20/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico
12.
Pharmaceuticals (Basel) ; 14(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074058

RESUMO

Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn's disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses.

13.
ChemMedChem ; 16(23): 3548-3552, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382337

RESUMO

Over half a century since the description of the first antiviral drug, "old" re-emerging viruses and "new" emerging viruses still represent a serious threat to global health. Their high mutation rate and rapid selection of resistance toward common antiviral drugs, together with the increasing number of co-infections, make the war against viruses quite challenging. Herein we report a host-targeted approach, based on the inhibition of the lipid kinase PI4KIIIß, as a promising strategy for inhibiting the replication of multiple viruses hijacking this protein. We show that bithiazole inhibitors of PI4KIIIß block the replication of human rhinoviruses (hRV), Zika virus (ZIKV) and SARS-CoV-2 at low micromolar and sub-micromolar concentrations. However, while the anti-hRV/ZIKV activity can be directly linked to PI4KIIIß inhibition, the role of PI4KIIIß in SARS-CoV-2 entry/replication is debated.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Antivirais/farmacologia , Inibidores Enzimáticos/química , Rhinovirus/fisiologia , SARS-CoV-2/fisiologia , Tiazóis/química , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia , 1-Fosfatidilinositol 4-Quinase/metabolismo , Antivirais/química , Antivirais/metabolismo , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , SARS-CoV-2/isolamento & purificação , Tiazóis/metabolismo , Zika virus/isolamento & purificação , Infecção por Zika virus/patologia
14.
FASEB J ; 23(2): 442-50, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18842964

RESUMO

Selective modulation of cell function by G protein-coupled receptor (GPCR) activation is highly desirable for basic research and therapy but difficult to achieve. We present a novel strategy toward this goal using muscarinic acetylcholine receptors as a model. The five subtypes bind their physiological transmitter in the highly conserved orthosteric site within the transmembrane domains of the receptors. Orthosteric muscarinic activators have no binding selectivity and poor signaling specificity. There is a less well conserved allosteric site at the extracellular entrance of the binding pocket. To gain subtype-selective receptor activation, we synthesized two hybrids fusing a highly potent oxotremorine-like orthosteric activator with M(2)-selective bis(ammonio)alkane-type allosteric fragments. Radioligand binding in wild-type and mutant receptors supplemented by receptor docking simulations proved M(2) selective and true allosteric/orthosteric binding. G protein activation measurements using orthosteric and allosteric blockers identified the orthosteric part of the hybrid to engender receptor activation. Hybrid-induced dynamic mass redistribution in CHO-hM(2) cells disclosed pathway-specific signaling. Selective receptor activation (M(2)>M(1)>M(3)) was verified in living tissue preparations. As allosteric sites are increasingly recognized on GPCRs, the dualsteric concept of GPCR targeting represents a new avenue toward potent agonists for selective receptor and signaling pathway activation.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Proteínas de Ligação ao GTP/agonistas , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/efeitos dos fármacos
15.
Eur J Pharmacol ; 876: 173061, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179086

RESUMO

Despite the high incidence of acute and chronic pain in the general population, the efficacy of currently available medications is unsatisfactory. Insufficient management of pain has a profound impact on the quality of life and can have serious physical, psychological, social, and economic consequences. This unmet need reflects a failure to develop novel classes of analgesic drugs with superior clinical properties and lower risk of abuse. Nevertheless, recent advances in our understanding of the neurobiology of pain are offering new opportunities for developing different therapeutic approaches. Among those, the activation of M2 muscarinic acetylcholine receptors, which play a key role in the cholinergic regulation of the nociceptive transmission, constitutes one of the most promising strategies. We have recently developed a small library of novel pharmacological agents by merging the structures of known orthosteric and allosteric muscarinic ligands through their molecular hybridization, an emerging approach in medicinal chemistry based on the combination of pharmacophoric moieties of different bioactive substances to produce a new compound with improved pharmacological properties. Herein we report the functional characterization of the new ligands in vitro and the assessment of their efficacy as analgesic agents and tolerability in mice. This work provides new insights for the development and optimization of novel muscarinic hybrid compounds for the management of pain.


Assuntos
Analgésicos/farmacologia , Descoberta de Drogas/métodos , Átrios do Coração/efeitos dos fármacos , Receptor Muscarínico M2/agonistas , Regulação Alostérica , Sítio Alostérico , Analgésicos/efeitos adversos , Analgésicos/química , Animais , Função do Átrio Esquerdo , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cobaias , Átrios do Coração/metabolismo , Técnicas In Vitro , Ligantes , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Dor/tratamento farmacológico , Receptor Muscarínico M2/antagonistas & inibidores
16.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050288

RESUMO

Mesenteric ischemia/reperfusion (I/R), following the transient deprivation of blood flow to the gut, triggers an acute flogistic process involving the disruption of endothelial and epithelial barriers integrity, the activation of immune cells, and the abundant release of inflammatory mediators. Among them, the lipid mediator sphingosine-1-phosphate (S1P) is involved in maintaining epithelial and endothelial barrier integrity and in governing the migration of immune cells through the interaction with S1P1-5 receptors. Therefore, the present work aims to investigate the involvement of S1P signaling in intestinal I/R-induced injury by studying the effects of FTY720, the non-selective S1P1,3-5 agonist, and comparing them with the responses to ozanimod, selective S1P1,5 agonist, in a murine model of gut I/R. Intestinal edema, gut and lung neutrophil infiltration, and oxidative stress were evaluated through biochemical and morphological assays. The collected results highlight the protective action of FTY720 against the inflammatory cascade elicited by mesenteric I/R injury, mainly through the control of vascular barrier integrity. While these beneficial effects were mimicked by ozanimod and can be therefore attributed largely to the effects exerted by FTY720 on S1P1, the recruitment of myeloid cells to the injured areas, limited by FTY720 but not by ozanimod, rather suggests the involvement of other receptor subtypes.

17.
Bioorg Med Chem ; 17(24): 8174-85, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19896386

RESUMO

Novel analogues of cis-N,N,N-trimethyl-(6-methyl-1,4-dioxan-2-yl)methanaminium iodide (2a) were synthesized by inserting methyl groups alternatively or simultaneously in positions 5 and 6 of the 1,4-dioxane nucleus in all combinations. Their biological profile was assessed by receptor binding assays at human muscarinic M(1)-M(5) receptors stably expressed in CHO cells and by functional studies performed on classical isolated organ preparations, namely, rabbit electrically stimulated vas deferens, and guinea pig electrically stimulated left atrium, ileum, and lung strips. The results showed that the simultaneous presence of one methyl group in both positions 5 and 6 with a trans stereochemical relationship with each other (diastereomers 4 and 5) or the geminal dimethylation in position 6 (compound 8) favour the selective activation of M(3) receptors. Compounds 4, 5, and 8 might be valuable tools in the characterization of the M(3) receptor, as well as provide useful information for the design and development of novel selective M(3) antagonists.


Assuntos
Dioxanos/farmacologia , Átrios do Coração/efeitos dos fármacos , Receptor Muscarínico M3/agonistas , Animais , Células CHO , Cricetinae , Cricetulus/metabolismo , Átrios do Coração/metabolismo , Humanos , Masculino , Receptor Muscarínico M3/metabolismo , Relação Estrutura-Atividade
18.
Front Pharmacol ; 10: 691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297055

RESUMO

Besides their long-known critical role in embryonic growth and in cancer development and progression, erythropoietin-producing hepatocellular carcinoma type B (EphB) receptor tyrosine kinases and their ephrin-B ligands are involved in the modulation of immune responses and in remodeling and maintaining the integrity of the intestinal epithelial layer. These processes are critically involved in the pathogenesis of inflammatory-based disorders of the gut, like inflammatory bowel diseases (IBDs). Accordingly, our aim was to investigate the role of the EphB/ephrin-B system in intestinal inflammation by assessing the local and systemic effects produced by its pharmacological manipulation in 2,4,6-trinitrobenzenesulfonic acid (TNBS)- (Th1-dependent model) and dextran sulphate sodium (DSS)- (innate response model) induced colitis in mice. To this purpose, we administered chimeric Fc-conjugated proteins, allegedly able to uni-directionally activate either forward (ephrin-B1-Fc) or reverse (EphB1-Fc) signaling, and the soluble monomeric EphB4 extracellular domain protein, that, simultaneously interfering with both signaling pathways, acts as EphB/ephrin-B antagonist.The blockade of the EphB/ephrin-B forward signaling by EphB4 and EphB1-Fc was ineffective against DSS-induced colitis while it evoked remarkable beneficial effects against TNBS colitis: it counteracted all the evaluated inflammatory responses and the changes elicited on splenic T lymphocytes subpopulations, without preventing the appearance of a splice variant of ephrin-B2 gene elicited by the haptenating agent in the colon. Interestingly, EphB4, preferentially displacing EphB4/ephrin-B2 interaction over EphB1/ephrin-B1 binding, was able to promote Tumor Necrosis Factor alpha (TNFα) release by splenic mononuclear cells in vitro. On the whole, the collected results point to a potential role of the EphB/ephrin-B system as a pharmacological target in intestinal inflammatory disorders and suggest that the therapeutic efficacy of its blockade seemingly works through the modulation of immune responses, independent of the changes at the transcriptional and translational level of EphB4 and ephrin-B2 genes.

19.
J Med Chem ; 62(23): 10833-10847, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31729878

RESUMO

Cystic fibrosis (CF) is a multiorgan disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR). In addition to respiratory impairment due to mucus accumulation, viruses and bacteria trigger acute pulmonary exacerbations, accelerating disease progression and mortality rate. Treatment complexity increases with patients' age, and simplifying the therapeutic regimen represents one of the key priorities in CF. We have recently reported the discovery of multitarget compounds able to "kill two birds with one stone" by targeting F508del-CFTR and PI4KIIIß and thus acting simultaneously as CFTR correctors and broad-spectrum enterovirus (EV) inhibitors. Starting from these preliminary results, we report herein a hit-to-lead optimization and multidimensional structure-activity relationship (SAR) study that led to compound 23a. This compound showed good antiviral and F508del-CFTR correction potency, additivity/synergy with lumacaftor, and a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. It was well tolerated in vivo with no sign of acute toxicity and histological alterations in key biodistribution organs.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Microssomos Hepáticos/efeitos dos fármacos , Animais , Antivirais , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Membranas Artificiais , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Ligação Proteica , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Testes de Toxicidade
20.
Naunyn Schmiedebergs Arch Pharmacol ; 378(3): 335-43, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18496672

RESUMO

The pharmacological profiling of potent histamine H(3)-ligands initiated in a previous study is completed here. In vitro functional and binding studies revealed that several derivatives were selective H(3)-antagonists with nanomolar potency at human and guinea-pig histamine receptors, able to inhibit rat brain cholinesterase at micromolar concentrations and devoid of any cytotoxicity on cultured cells. Ex vivo binding experiments in rats showed that the most potent H(3)-antagonist, compound 5, had a prompt and long-lasting presence in the central nervous system (CNS), inhibiting [(3)H](R)-alpha-methylhistamine cortical binding [ED(50) (dose that elicits a 50% response) = 0.63 mg/kg intraperitoneally (i.p.)]. In the passive-avoidance test, compound 5, at 1.25 mg/kg i.p., was as effective as the anti-Alzheimer drug donepezil in attenuating scopolamine-induced amnesia in rats. These results suggest that a good CNS penetration and multitarget activity could account for the antiamnesic effect of this weak cholinesterase inhibitor and potent H(3)-antagonist (compound 5). This result represents a potential benchmark for the development of non-imidazole H(3)-antagonists/cholinesterase inhibitors with therapeutic potential in cognitive disorders.


Assuntos
Encéfalo/metabolismo , Inibidores da Colinesterase/metabolismo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacocinética , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Interpretação Estatística de Dados , Estimulação Elétrica , Cobaias , Coração/efeitos dos fármacos , Humanos , Íleo/efeitos dos fármacos , Imidazóis/química , Técnicas In Vitro , Memória/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa