Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 584(7821): 403-409, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760000

RESUMO

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Répteis/genética , Animais , Conservação dos Recursos Naturais/tendências , Feminino , Genética Populacional , Lagartos/genética , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Caracteres Sexuais , Serpentes/genética , Sintenia
3.
J Immunol ; 208(8): 1960-1967, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346964

RESUMO

T lymphocytes or T cells are key components of the vertebrate response to pathogens and cancer. There are two T cell classes based on their TCRs, αß T cells and γδ T cells, and each plays a critical role in immune responses. The squamate reptiles may be unique among the vertebrate lineages by lacking an entire class of T cells, the γδ T cells. In this study, we investigated the basis of the loss of the γδ T cells in squamates. The genome and transcriptome of a sleepy lizard, the skink Tiliqua rugosa, were compared with those of tuatara, Sphenodon punctatus, the last living member of the Rhynchocephalian reptiles. We demonstrate that the lack of TCRγ and TCRδ transcripts in the skink are due to large deletions in the T. rugosa genome. We also show that tuataras are on a growing list of species, including sharks, frogs, birds, alligators, and platypus, that can use an atypical TCRδ that appears to be a chimera of a TCR chain with an Ab-like Ag-binding domain. Tuatara represents the nearest living relative to squamates that retain γδ T cells. The loss of γδTCR in the skink is due to genomic deletions that appear to be conserved in other squamates. The genes encoding the αßTCR chains in the skink do not appear to have increased in complexity to compensate for the loss of γδ T cells.


Assuntos
Genoma , Lagartos , Animais , Lagartos/genética , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T
4.
Mol Phylogenet Evol ; 173: 107522, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595008

RESUMO

In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.


Assuntos
Besouros , Animais , Besouros/genética , Evolução Molecular , Opsinas/genética , Filogenia , Água
5.
Mol Phylogenet Evol ; 160: 107140, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33711446

RESUMO

Snubnose gobies (genus Pseudogobius: Gobionellinae) are ubiquitous to, and important components of, estuarine ecosystems of the Indo-west Pacific. These small benthic fishes occur in freshwater, brackish and marine habitats such as mangroves, sheltered tide pools and lowland streams, and represent a model group for understanding the biodiversity and biogeography of estuarine fauna. To develop the species-level framework required for a concurrent morphological taxonomic appraisal, we undertook thorough sampling around the extensive Australian coastline, referenced to international locations, as part of a molecular systematic review using both nuclear and mitochondrial markers. The results indicate that while there are currently eight recognised species, the true diversity is close to double this, with a hotspot of endemism located in Australia. Complicated patterns were observed in southern Australia owing to two differing zones of introgression/admixture. Key drivers of diversity in the group appear to include plate tectonics, latitude, and historic barriers under glacial maxima, where an interplay between ready dispersal and habitat specialisation has led to regional panmixia but frequent geographic compartmentalisation within past and present landscapes. The findings have significant implications for biodiversity conservation, coastal and estuarine development, the basic foundations of field ecology, and for applied use such as in biomonitoring.


Assuntos
Biodiversidade , Estuários , Peixes/classificação , Peixes/genética , Animais , Austrália , Filogeografia
6.
J Fish Biol ; 99(1): 87-100, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583039

RESUMO

Flathead gobies (genus Glossogobius) include c. 40 small- to medium-sized benthic fishes found primarily in freshwater habitats across the Indo-Pacific, having biodiversity value as well as cultural and economic value as food fishes, especially in developing countries. To help resolve considerable confusion regarding the identification of some of the larger-growing Glossogobius species, a systematic framework was established using nuclear genetic markers, mitochondrial DNA barcoding and phenotypic evidence for a geographically widespread collection of individuals from the waterways of tropical northern Australia. Species boundaries and distribution patterns were discordant with those previously reported, most notably for the tank goby Glossogobius giuris, which included a cryptic species. Genetic divergence was matched with accompanying unique visual characters that aid field identification. Additional taxonomic complexity was also evident, by comparison with DNA barcodes from international locations, suggesting that the specific names applicable for two of the candidate species in Australia remain unresolved due to confusion surrounding type specimens. Although flathead gobies are assumed to be widespread and common, this study demonstrates that unrealised taxonomic and ecological complexity is evident, and this will influence assessments of tropical biodiversity and species conservation. This study supports the need for taxonomic studies of freshwater fishes to underpin management in areas subject to significant environmental change.


Assuntos
Perciformes , Rios , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Peixes/genética , Perciformes/genética , Filogenia
7.
Mol Phylogenet Evol ; 129: 130-137, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29763664

RESUMO

Accurate identification of parasite species and strains is crucial to mitigate the risk of epidemics and emerging disease. Species of Neobenedenia are harmful monogenean ectoparasites that infect economically important bony fishes in aquaculture worldwide, however, the species boundaries between two of the most notorious taxa, N. melleni and N. girellae, has been a topic of contention for decades. Historically, identifications of Neobenedenia isolates have overwhelmingly been attributed to N. melleni, and it has been proposed that N. girellae is synonymous with N. melleni. We collected 33 Neobenedenia isolates from 22 host species spanning nine countries and amplified three genes including two nuclear (Histone 3 and 28S rDNA) and one mitochondrial (cytochrome b). Four major clades were identified using Maximum Likelihood and Bayesian inference analyses; clades A-D corresponding to N. girellae, N. melleni, N. longiprostata and N. pacifica, respectively. All unidentified isolates and the majority of Neobenedenia sequences from GenBank fell into clade A. The results of this study indicate that N. girellae is a separate species to N. melleni, and that a large proportion of previous samples identified as N. melleni may be erroneous and a revision of identifications is needed. The large diversity of host species that N. girellae is able to infect as determined in this study and the geographic range in which it is present (23.8426°S and 24.1426°N) makes it a globally cosmopolitan species and a threat to aquaculture industries around the world.


Assuntos
Aquicultura , Impressões Digitais de DNA , Pesqueiros , Peixes/parasitologia , Parasitos/genética , Trematódeos/genética , Animais , Sequência de Bases , Teorema de Bayes , Doenças dos Peixes/parasitologia , Especificidade de Hospedeiro , Parasitos/isolamento & purificação , Filogenia , Especificidade da Espécie , Trematódeos/classificação , Trematódeos/isolamento & purificação
8.
Mol Phylogenet Evol ; 104: 83-98, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27469380

RESUMO

Groundwater calcrete aquifers of central Western Australia have been shown to contain a high diversity of stygobiont (subterranean aquatic) invertebrates, with each species confined to an individual calcrete and the entire system resembling a 'subterranean archipelago' containing hundreds of isolated calcretes. Here, we utilised alternative sampling techniques above the water table and uncovered a significant fauna of subterranean terrestrial oniscidean isopods from the calcretes. We explored the diversity and evolution of this fauna using molecular analyses based on one mitochondrial gene, Cytochrome C Oxidase Subunit I (COI), two Ribosomal RNA genes (28S and 18S), and one protein coding nuclear gene, Lysyl-tRNA Synthetase (LysRS). The results from 12 calcretes showed the existence of 36 divergent DNA lineages belonging to four oniscidean families (Paraplatyarthridae, Armadillidae, Stenoniscidae and Philosciidae). Using a combination of phylogenetic and species delimitation methods, we hypothesized the occurrence of at least 27 putative new species of subterranean oniscideans, of which 24 taxa appeared to be restricted to an individual calcrete, lending further support to the "subterranean island hypothesis". Three paraplatyarthrid species were present on adjacent calcretes and these exceptions possessed more ommatidia and body pigments compared with the calcrete-restricted taxa, and are likely to represent troglophiles. The occurrence of stenoniscid isopods in the calcretes of central Western Australia, a group previously only known from the marine littoral zone, suggests a link to the marine inundation of the Eucla basin during the Late Eocene. The current oniscidean subterranean fauna consists of groups known to be subtropical, littoral and benthic, reflecting different historical events that have shaped the evolution of the fauna in the calcretes.


Assuntos
Isópodes/classificação , Animais , Biodiversidade , Citocromos c/classificação , Citocromos c/genética , Citocromos c/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Bases de Dados Genéticas , Água Subterrânea/parasitologia , Isópodes/genética , Lisina-tRNA Ligase/classificação , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Austrália Ocidental
9.
Proc Natl Acad Sci U S A ; 110(3): 1012-6, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277587

RESUMO

In higher organisms such as vertebrates, it is generally believed that lateral transfer of genetic information does not readily occur, with the exception of retroviral infection. However, horizontal transfer (HT) of protein coding repetitive elements is the simplest way to explain the patchy distribution of BovB, a long interspersed element (LINE) about 3.2 kb long, that has been found in ruminants, marsupials, squamates, monotremes, and African mammals. BovB sequences are a major component of some of these genomes. Here we show that HT of BovB is significantly more widespread than believed, and we demonstrate the existence of two plausible arthropod vectors, specifically reptile ticks. A phylogenetic tree built from BovB sequences from species in all of these groups does not conform to expected evolutionary relationships of the species, and our analysis indicates that at least nine HT events are required to explain the observed topology. Our results provide compelling evidence for HT of genetic material that has transformed vertebrate genomes.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Retroelementos , Animais , Sequência de Bases , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Vertebrados/classificação , Vertebrados/genética
10.
Parasitology ; 142(8): 1066-79, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25877339

RESUMO

Dicyemids, poorly known parasites of benthic cephalopods, are one of the few phyla in which mitochondrial (mt) genome architecture departs from the typical ~16 kb circular metazoan genome. In addition to a putative circular genome, a series of mt minicircles that each comprises the mt encoded units (I-III) of the cytochrome c oxidase complex have been reported. Whether the structure of the mt minicircles is a consistent feature among dicyemid species is unknown. Here we analyse the complete cytochrome c oxidase subunit I (COI) minicircle molecule, containing the COI gene and an associated non-coding region (NCR), for ten dicyemid species, allowing for first time comparisons between species of minicircle architecture, NCR function and inferences of minicircle replication. Divergence in COI nucleotide sequences between dicyemid species was high (average net divergence = 31.6%) while within species diversity was lower (average net divergence = 0.2%). The NCR and putative 5' section of the COI gene were highly divergent between dicyemid species (average net nucleotide divergence of putative 5' COI section = 61.1%). No tRNA genes were found in the NCR, although palindrome sequences with the potential to form stem-loop structures were identified in some species, which may play a role in transcription or other biological processes.


Assuntos
Cefalópodes/parasitologia , Variação Genética , Genoma Mitocondrial/genética , Invertebrados/classificação , Animais , Sequência de Bases , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Invertebrados/enzimologia , Invertebrados/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Dados de Sequência Molecular , Filogenia , RNA não Traduzido/genética , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Especificidade da Espécie
12.
Zootaxa ; 3981(3): 367-84, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26250000

RESUMO

The Magpie Fiddler ray, Trygonorrhina melaleuca Scott 1954, is presently South Australia's (SA) rarest fish, represented by only three museum specimens collected near Adelaide over the past 60 years and listed as Endangered in the IUCN Red List of Threatened Species. However, there is some doubt as to whether the Magpie Fiddler Ray is a different species from the widespread and common Southern Fiddler Ray, Trygonorrhina dumerilii (Castelnau 1873), resulting in two very contrasting scenarios for marine conservation. If the Magpie Fiddler Ray is a black and white patterned variant of the Southern Fiddler Ray then it will be removed from the Red List and appear as a synonym of T. dumerilii. Conversely, if it proves to be a different species then it remains SA's rarest fish species and highly data deficient. We analysed mtDNA and the largest ever nuclear gene dataset (>4,000 loci) applied to chondrichthyan species level systematics from the most recently collected Magpie Fiddler Ray specimens and a geographically representative selection of Southern Fiddler Rays to determine the species status of this enigmatic ray. We found that the Magpie Fiddler Rays share a mitochondrial haplotype with 23 Southern Fiddler Rays and are not differentiated from 35 Southern Fiddler Rays at more than 4000 SNPs derived from DArTseq data. The morphological trait values that are putatively diagnostic for the Magpie Fiddler Ray fall within the range of variation observed among Southern Fiddler Rays. Our analyses are consistent with the notion that the Magpie Fiddler Ray is a rare colour and pattern variant of the widespread and abundant Southern Fiddler Ray. We also identified two hybrids between the Eastern and Southern Fiddler Rays, only the third time that hybrids have been identified in nature in chondrichthyans. Our results provide critical guidance in the assessment of its conservation status and an ending to a 60 year old conundrum for marine conservation.


Assuntos
Besouros/classificação , Rajidae/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Austrália , Tamanho Corporal , Besouros/anatomia & histologia , Besouros/crescimento & desenvolvimento , Cor , Ecossistema , Feminino , Masculino , Tamanho do Órgão , Filogenia , Rajidae/anatomia & histologia , Rajidae/genética , Rajidae/crescimento & desenvolvimento
13.
Bioinformatics ; 28(14): 1807-10, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22581180

RESUMO

MOTIVATION: When working with non-model organisms, few if any species-specific markers are available for phylogenetic, phylogeographic and population studies. Therefore, researchers often try to adapt markers developed in distantly related taxa, resulting in poor amplification and ascertainment bias in their target taxa. Markers can be developed de novo and anonymous nuclear loci (ANL) are proving to be a boon for researchers seeking large numbers of fast-evolving, independent loci. However, the development of ANL can be laboratory intensive and expensive. A workflow is described to identify suitable low-copy anonymous loci from high-throughput shotgun sequences, dramatically reducing the cost and time required to develop these markers and produce robust multilocus datasets. RESULTS: By successively removing repetitive and evolutionary conserved sequences from low coverage shotgun libraries, we were able to isolate thousands of potential ANL. Empirical testing of loci developed from two reptile taxa confirmed that our methodology yields markers with comparable amplification rates and nucleotide diversities to ANLs developed using other methodologies. Our approach capitalizes on next-generation sequencing technologies to enable the development of phylogenetic, phylogeographic and population markers for taxa lacking suitable genomic resources.


Assuntos
Biologia Computacional/métodos , Loci Gênicos , Genômica/métodos , Análise de Sequência de DNA/métodos , Animais , Núcleo Celular/genética , Biblioteca Gênica , Répteis/genética
14.
Mol Phylogenet Evol ; 66(3): 575-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23026811

RESUMO

The viviparous sea snakes (Hydrophiinae: Hydrophiini) comprise a young but morphologically and ecologically diverse clade distributed throughout the Indo-Pacific. Despite presenting a very promising model for marine diversification studies, many relationships among the 62 species and 16 genera in Hydrophiini remain unresolved. Here, we extend previous taxonomic and genomic sampling for Hydrophiini using three mitochondrial fragments and five nuclear loci for multiple individuals of 39 species in 15 genera. Our results highlight many of the impediments to inferring phylogenies in recent rapid radiations, including low variation at all five nuclear markers, and conflicting relationships supported by mitochondrial and nuclear trees. However, concatenated Bayesian and likelihood analyses, and a multilocus coalescent tree, recovered concordant support for primary clades and several previously unresolved inter-specific groupings. The Aipysurus group is monophyletic, with egg-eating specialists forming separate, early-diverging lineages. All three monotypic semi-aquatic genera (Ephalophis, Parahydrophis and Hydrelaps) are robustly placed as early diverging lineages along the branch leading to the Hydrophis group, with Ephalophis recovered as sister to Parahydrophis. The molecular phylogeny implies extensive evolutionary convergence in feeding adaptations within the Hydrophis group, especially the repeated evolution of small-headed (microcephalic) forms. Microcephalophis (Hydrophis) gracilis is robustly recovered as a relatively distant sister lineage to all other sampled Hydrophis group species, here termed the 'core Hydrophis group'. Within the 'core Hydrophis group', Hydrophis is recovered as broadly paraphyletic, with several other genera nested within it (Pelamis, Enhydrina, Astrotia, Thalassophina, Acalyptophis, Kerilia, Lapemis, Disteira). Instead of erecting multiple new genera, we recommend dismantling the latter (mostly monotypic) genera and recognising a single genus, Hydrophis Latreille 1802, for the core Hydrophis group. Estimated divergence times suggest that all Hydrophiini last shared a common ancestor ∼6million years ago, but that the majority of extant lineages diversified over the last ∼3.5million years. The core Hydrophis group is a young and rapidly speciating clade, with 26 sampled species and 9 genera and dated at only ∼1.5-3million years old.


Assuntos
Distribuição Animal , Elapidae/classificação , Elapidae/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Comportamento Alimentar/fisiologia , Oceano Índico , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Oceano Pacífico , Análise de Sequência de DNA , Especificidade da Espécie
15.
Zootaxa ; 5297(3): 301-336, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37518792

RESUMO

Mixophyes are large ground-dwelling myobatrachid frogs from eastern Australia and New Guinea. Several of the species found in mid-eastern and south-eastern Australia are listed as threatened, due largely to declines presumably caused by the amphibian disease chytridiomycosis. Given the wide distribution of several of these species and that their distributions cross well-known biogeographic boundaries that often correspond to deep genetic breaks or species boundaries among closely related vertebrates, we undertook a molecular genetic assessment of population structure across the range of each species to determine the presence of undescribed species. Of the four species of Mixophyes subject to molecular population genetic analyses, one, the Stuttering Frog (Mixophyes balbus), showed a level of diversity consistent with the presence of two species. Morphometric, meristic and bioacoustic analyses corroborate these distinctions, and a new species is described for the populations south of the Macleay River valley in mid-eastern New South Wales to east Gippsland in Victoria. Applying the IUCN Red List threat criteria the new species meets the conservation status assessment criteria for Endangered 2B1a,b because its extent of occupancy and area of occupancy are below the threshold value and it has declined and disappeared from the southern two thirds of its distribution over the past 30 years.


Assuntos
Anuros , Meio Ambiente , Animais , Anuros/genética , Biologia Molecular
16.
Mol Ecol ; 21(9): 2106-15, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22404597

RESUMO

The divergence-with-gene-flow model of speciation has a strong theoretical basis with a growing number of plausible examples in nature, but remains hotly debated. Darwin's finches of the Galápagos Archipelago have played an important role in our understanding of speciation processes. Recent studies suggest that this group may also provide insights into speciation via divergence with gene flow. On the island of Santa Cruz, recent studies found evidence for adaptive divergence in Darwin's small ground finch, Geospiza fuliginosa, between ecologically contrasting arid and humid zones. Despite the short geographical distance between these zones, strong disruptive selection during low rainfall periods is expected to generate and maintain adaptive divergence. Conversely, during high rainfall periods, when disruptive selection is predicted to be weakened, population divergence in adaptive traits is expected to break down. Because periods of low and high rainfall irregularly alternate, the geographical pattern of adaptive divergence can be assumed to break down and, importantly, regenerate in situ. Here, we use microsatellite allele frequency data to assess the genetic population structure of G. fuliginosa on Santa Cruz. We sample 21 sites and four ecological zones across the island. We reject hypotheses of population substructure linked to ecological and geographical differences among sites in favour of a single panmictic population. Panmixia implies high levels of gene flow within Santa Cruz, which favours selection over genetic drift as a valid process generating phenotypic divergence in G. fuliginosa on Santa Cruz. We discuss how our findings may support classic adaptation, phenotypic plasticity, matching habitat choice or any combination of these three processes.


Assuntos
Tentilhões/genética , Fluxo Gênico , Frequência do Gene , Especiação Genética , Repetições de Microssatélites/genética , Animais , Ecossistema , Equador , Meio Ambiente , Variação Genética , Geografia
17.
Zootaxa ; 5104(2): 209-241, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35391040

RESUMO

The six species of mountain frogs (Philoria: Limnodynastidae: Anura) are endemic to south-eastern Australia. Five species occur in headwater systems in mountainous north-eastern New South Wales (NSW) and south-eastern Queensland (Qld), centred on the Gondwana Rainforests of Australia World Heritage Area. A previous molecular genetic analysis identified divergent genetic lineages in the central and western McPherson Ranges region of Qld and NSW, but sampling was inadequate to test the species status of these lineages. With more comprehensive geographic sampling and examination of the nuclear genome using SNP analysis, we show that an undescribed species, P. knowlesi sp. nov., occurs in the central and western McPherson Ranges (Levers Plateau and Mount Barney complex). The new species is not phylogenetically closely related to P. loveridgei in the nuclear data but is related to one of two divergent lineages within P. loveridgei in the mtDNA data. We postulate that the discordance between the nuclear and mtDNA outcomes is due to ancient introgression of the mtDNA genome from P. loveridgei into the new species. Male advertisement calls and multivariate morphological analyses do not reliably distinguish P. knowlesi sp. nov. from any of the Philoria species in northeast NSW and southeast Qld. The genetic comparisons also enable us to define further the distributions of P. loveridgei and P. kundagungan. Samples from the Lamington Plateau, Springbrook Plateau, Wollumbin (Mt Warning National Park), and the Nightcap Range, are all P. loveridgei, and its distribution is now defined as the eastern McPherson Ranges and Tweed caldera. Philoria kundagungan is distributed from the Mistake Mountains in south-eastern Qld to the Tooloom Scrub on the Koreelah Range, southwest of Woodenbong, in NSW, with two subpopulations identified by SNP analysis. We therefore assessed the IUCN threat category of P. loveridgei and P. kundagungan and undertook new assessments for each of its two subpopulations and for the new taxon P. knowlesi sp. nov., using IUCN Red List criteria. Philoria loveridgei, P. kundagungan (entire range and northern subpopulation separately) and P. knowlesi sp. nov. each meet criteria for Endangered (EN B2(a)(b)[i, iii]). The southern subpopulation of P. kundagungan, in the Koreelah Range, meets criteria for Critically Endangered (CE B2(a)(b)[i, iii]). These taxa are all highly threatened due to the small number of known locations, the restricted nature of their breeding habitat, and direct and indirect threats from climate change, and the potential impact of the amphibian disease chytridiomycosis. Feral pigs are an emerging threat, with significant impacts now observed in Philoria breeding habitat in the Mistake Mountains.


Assuntos
Anuros , Floresta Úmida , Animais , Anuros/genética , Austrália , DNA Mitocondrial/genética , Masculino , Filogenia
18.
Sci Rep ; 12(1): 16194, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171221

RESUMO

Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42-46 °C), but the genetic basis of this physiological difference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses differ between species and a far greater number were differentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only differentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular findings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.


Assuntos
Besouros , Animais , Besouros/genética , Ecossistema , Resposta ao Choque Térmico/genética , Transcriptoma
19.
Zootaxa ; 5016(4): 451-489, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34810435

RESUMO

The rarely encountered giant burrowing frog, Heleioporus australiacus, is distributed widely in a variety of sclerophyll forest habitats east of the Great Dividing Range in south-eastern Australia. Analyses of variation in nucleotide sequences of the mitochondrial ND4 gene and thousands of nuclear gene SNPs revealed the presence of two deeply divergent lineages. Multivariate morphological comparisons show the two lineages differ in body proportions with > 91% of individuals being correctly classified in DFA. The two lineages differ in the number and size of spots on the lateral surfaces and the degree by which the cloaca is surrounded by colour patches. The mating calls are significantly different in number of pulses in the note. The presence of a F2 hybrid in the area where the distribution of the two taxa come into closest proximity leads us to assign subspecies status to the lineages, as we have not been able to assess the extent of potential genetic introgression. In our sampling, the F2 hybrid sample sits within an otherwise unsampled gap of ~90km between the distributions of the two lineages. The nominate northern sub-species is restricted to the Sydney Basin bioregion, while the newly recognised southern subspecies occurs from south of the Kangaroo Valley in the mid-southern coast of New South Wales to near Walhalla in central Gippsland in Victoria. The habitat of the two subspecies is remarkably similar. Adults spend large portions of their lives on the forest floor where they forage and burrow in a variety of vegetation communities. The southern subspecies occurs most commonly in dry sclerophyll forests with an open understory in the south and in open forest and heath communities with a dense understory in the north of its distribution. The northern subspecies is also found in dry open forests and heaths in association with eroded sandstone landscapes in the Sydney Basin bioregion. Males of both taxa call from both constructed burrows and open positions on small streams, differing from the five Western Australian species of Heleioporus where males call only from constructed burrows. Using the IUCN Red List process, we found that the extent of occupancy and area of occupancy along with evidence of decline for both subspecies are consistent with the criteria for Endangered (A2(c)B2(a)(b)).


Assuntos
Anuros , Ecossistema , Animais , Anuros/genética , Genes Mitocondriais , Masculino , Filogenia
20.
Curr Res Insect Sci ; 1: 100019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36003597

RESUMO

Thermal tolerance limits in animals are often thought to be related to temperature and thermal variation in their environment. Recently, there has been a focus on studying upper thermal limits due to the likelihood for climate change to expose more animals to higher temperatures and potentially extinction. Organisms living in underground environments experience reduced temperatures and thermal variation in comparison to species living in surface habitats, but how these impact their thermal tolerance limits are unclear. In this study, we compare the thermal critical maximum (CTmax) of two subterranean diving beetles (Dytiscidae) to that of three related surface-dwelling species. Our results show that subterranean species have a lower CTmax (38.3-39.0°C) than surface species (42.0-44.5°C). The CTmax of subterranean species is ∼10°C higher than the highest temperature recorded within the aquifer. Groundwater temperature varied between 18.4°C and 28.8°C, and changes with time, depth and distance across the aquifer. Seasonal temperature fluctuations were 0.5°C at a single point, with the maximum heating rate being ∼1000x lower (0.008°C/hour) than that recorded in surface habitats (7.98°C/hour). For surface species, CTmax was 7-10°C higher than the maximum temperature in their habitats, with daily fluctuations from ∼1°C to 16°C and extremes of 6.9°C and 34.9°C. These findings suggest that subterranean dytiscid beetles are unlikely to reach their CTmax with a predicted warming of 1.3-5.1°C in the region by 2090. However, the impacts of long-term elevated temperatures on fitness, different life stages and other species in the beetle's trophic food web are unknown.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa