Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biochim Biophys Acta ; 1837(2): 277-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24212053

RESUMO

In Rhodobacter sphaeroides periplasmic nitrate reductase NapAB, the major Mo(V) form (the "high g" species) in air-purified samples is inactive and requires reduction to irreversibly convert into a catalytically competent form (Fourmond et al., J. Phys. Chem., 2008). In the present work, we study the kinetics of the activation process by combining EPR spectroscopy and direct electrochemistry. Upon reduction, the Mo (V) "high g" resting EPR signal slowly decays while the other redox centers of the protein are rapidly reduced, which we interpret as a slow and gated (or coupled) intramolecular electron transfer between the [4Fe-4S] center and the Mo cofactor in the inactive enzyme. Besides, we detect spin-spin interactions between the Mo(V) ion and the [4Fe-4S](1+) cluster which are modified upon activation of the enzyme, while the EPR signatures associated to the Mo cofactor remain almost unchanged. This shows that the activation process, which modifies the exchange coupling pathway between the Mo and the [4Fe-4S](1+) centers, occurs further away than in the first coordination sphere of the Mo ion. Relying on structural data and studies on Mo-pyranopterin and models, we propose a molecular mechanism of activation which involves the pyranopterin moiety of the molybdenum cofactor that is proximal to the [4Fe-4S] cluster. The mechanism implies both the cyclization of the pyran ring and the reduction of the oxidized pterin to give the competent tricyclic tetrahydropyranopterin form.


Assuntos
Coenzimas/metabolismo , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Nitrato Redutase/metabolismo , Periplasma/enzimologia , Pteridinas/metabolismo , Rhodobacter sphaeroides/enzimologia , Coenzimas/química , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Íons , Proteínas Ferro-Enxofre/metabolismo , Cinética , Ligantes , Metaloproteínas/química , Modelos Moleculares , Cofatores de Molibdênio , Nitrato Redutase/química , Oxirredução , Pteridinas/química , Pterinas/química , Pterinas/metabolismo , Marcadores de Spin , Temperatura
2.
Phys Chem Chem Phys ; 15(20): 7621-7, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23591660

RESUMO

Cluster secondary ion mass spectrometry is now widely used for the characterization of nanostructures. In order to gain a better understanding of the physics of keV cluster bombardment of surfaces and nanoparticles (NPs), the effects of the atomic masses of the projectile and of the target on the energy deposition and induced sputtering have been studied by means of molecular dynamics simulations. 10 keV C60 was used as a model projectile and impacts on both a flat polymer surface and a metal NP were analyzed. In the first case, the mass of the impinging carbon atoms was artificially varied and, in the second case, the mass of the NP atoms was varied. The results can be rationalized on the basis of the different atomic mass ratios of the projectile and target. In general, the emission is at its maximum, when the projectile and target have the same atomic masses. In the case of the supported NP, the emission of the underlying organic material increases as the atomic mass of the NP decreases. However, it is always less than that calculated for the bare organic surface, irrespective of the mass ratio. The results obtained with C60 impacts on the flat polymer are also compared to simulations of C60 and monoatomic Ga impacts on the NP.


Assuntos
Fulerenos/química , Gálio/química , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Polímeros/química , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
3.
J Am Chem Soc ; 134(20): 8368-71, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540997

RESUMO

When enzymes are optimized for biotechnological purposes, the goal often is to increase stability or catalytic efficiency. However, many enzymes reversibly convert their substrate and product, and if one is interested in catalysis in only one direction, it may be necessary to prevent the reverse reaction. In other cases, reversibility may be advantageous because only an enzyme that can operate in both directions can turnover at a high rate even under conditions of low thermodynamic driving force. Therefore, understanding the basic mechanisms of reversibility in complex enzymes should help the rational engineering of these proteins. Here, we focus on NiFe hydrogenase, an enzyme that catalyzes H(2) oxidation and production, and we elucidate the mechanism that governs the catalytic bias (the ratio of maximal rates in the two directions). Unexpectedly, we found that this bias is not mainly determined by redox properties of the active site, but rather by steps which occur on sites of the proteins that are remote from the active site. We evidence a novel strategy for tuning the catalytic bias of an oxidoreductase, which consists in modulating the rate of a step that is limiting only in one direction of the reaction, without modifying the properties of the active site.


Assuntos
Desulfovibrio/enzimologia , Hidrogenase/metabolismo , Domínio Catalítico , Desulfovibrio/química , Desulfovibrio/genética , Hidrogenase/química , Hidrogenase/genética , Modelos Moleculares , Mutação , Oxirredução , Termodinâmica
4.
Nat Chem Biol ; 6(1): 63-70, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19966788

RESUMO

In hydrogenases and many other redox enzymes, the buried active site is connected to the solvent by a molecular channel whose structure may determine the enzyme's selectivity with respect to substrate and inhibitors. The role of these channels has been addressed using crystallography and molecular dynamics, but kinetic data are scarce. Using protein film voltammetry, we determined and then compared the rates of inhibition by CO and O2 in ten NiFe hydrogenase mutants and two FeFe hydrogenases. We found that the rate of inhibition by CO is a good proxy of the rate of diffusion of O2 toward the active site. Modifying amino acids whose side chains point inside the tunnel can slow this rate by orders of magnitude. We quantitatively define the relations between diffusion, the Michaelis constant for H2 and rates of inhibition, and we demonstrate that certain enzymes are slowly inactivated by O2 because access to the active site is slow.


Assuntos
Desulfovibrio/enzimologia , Hidrogenase/química , Oxigênio/química , Aminoácidos/química , Monóxido de Carbono/química , Domínio Catalítico , Cristalografia por Raios X/métodos , Difusão , Eletroquímica/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Cinética , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular
5.
J Am Chem Soc ; 133(26): 10211-21, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21615141

RESUMO

Electrons are transferred over long distances along chains of FeS clusters in hydrogenases, mitochondrial complexes, and many other respiratory enzymes. It is usually presumed that electron transfer is fast in these systems, despite the fact that there has been no direct measurement of rates of FeS-to-FeS electron transfer in any respiratory enzyme. In this context, we propose and apply to NiFe hydrogenase an original strategy that consists of quantitatively interpreting the variations of steady-state activity that result from changing the nature of the FeS clusters which connect the active site to the redox partner, and/or the nature of the redox partner. Rates of intra- and intermolecular electron transfer are deduced from such large data sets. The mutation-induced variations of electron transfer rates cannot be explained by changes in intercenter distances and reduction potentials. This establishes that FeS-to-FeS rate constants are extremely sensitive to the nature and coordination of the centers.


Assuntos
Hidrogenase/metabolismo , Desulfovibrio vulgaris/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Hidrogenase/química , Ferro/química , Cinética , Modelos Moleculares , Conformação Proteica , Enxofre/química
6.
J Am Chem Soc ; 133(7): 2096-9, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21271703

RESUMO

Carbon monoxide is often described as a competitive inhibitor of FeFe hydrogenases, and it is used for probing H(2) binding to synthetic or in silico models of the active site H-cluster. Yet it does not always behave as a simple inhibitor. Using an original approach which combines accurate electrochemical measurements and theoretical calculations, we elucidate the mechanism by which, under certain conditions, CO binding can cause permanent damage to the H-cluster. Like in the case of oxygen inhibition, the reaction with CO engages the entire H-cluster, rather than only the Fe(2) subsite.


Assuntos
Monóxido de Carbono/química , Hidrogenase/química , Teoria Quântica , Domínio Catalítico , Eletroquímica , Oxirredução
7.
Proc Natl Acad Sci U S A ; 105(32): 11188-93, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18685111

RESUMO

Hydrogenases, which catalyze H(2) to H(+) conversion as part of the bioenergetic metabolism of many microorganisms, are among the metalloenzymes for which a gas-substrate tunnel has been described by using crystallography and molecular dynamics. However, the correlation between protein structure and gas-diffusion kinetics is unexplored. Here, we introduce two quantitative methods for probing the rates of diffusion within hydrogenases. One uses protein film voltammetry to resolve the kinetics of binding and release of the competitive inhibitor CO; the other is based on interpreting the yield in the isotope exchange assay. We study structurally characterized mutants of a NiFe hydrogenase, and we show that two mutations, which significantly narrow the tunnel near the entrance of the catalytic center, decrease the rates of diffusion of CO and H(2) toward and from the active site by up to 2 orders of magnitude. This proves the existence of a functional channel, which matches the hydrophobic cavity found in the crystal. However, the changes in diffusion rates do not fully correlate with the obstruction induced by the mutation and deduced from the x-ray structures. Our results demonstrate the necessity of measuring diffusion rates and emphasize the role of side-chain dynamics in determining these.


Assuntos
Monóxido de Carbono/química , Desulfovibrio/enzimologia , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Hidrogênio/química , Hidrogenase/química , Sítios de Ligação/genética , Cristalografia por Raios X , Desulfovibrio/genética , Eletroquímica , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Gases/química , Hidrogenase/antagonistas & inibidores , Hidrogenase/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Mutação , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética
8.
Biochemistry ; 49(11): 2424-32, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20146468

RESUMO

Rhodobacter sphaeroides periplasmic nitrate reductase (Rs NapAB) is one of the enzymes whose assays give odd results: in spectrophotometric assays with methyl viologen as the electron donor, the activity increases as the reaction progresses, whereas the driving force provided by the soluble redox partner decreases; in protein film voltammetry (PFV), whereby the enzyme directly exchanges electrons with an electrode, the activity of NapAB decreases at large overpotential, whereas a monotonic increase is expected [Elliott, S. J., et al. (2002) Biochim. Biophys. Acta 1555, 54-59]. The relations between these phenomena and the catalytic mechanism are still debated. By studying NapAB mutants, we found that the peculiar dependences of electrochemical and solution activities on driving force are greatly affected by substituting certain amino acids that are located in the vicinity of the active site (M153, Q384, R392); this led us to establish and discuss the relation between the experimental parameters of the electrochemical and spectrophotometric assays: we show that the rate of reduction of the enzyme (which depends on the electrode potential or on the concentration of reduced MV) modulates the activity of the enzyme, but the "solution potential" does not. Our results also support the view that the complex profiles of activity versus potential are fingerprints of the active site chemistry, rather than direct consequences of changes in the redox states of relays that are remote from the active site.


Assuntos
Biocatálise , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Domínio Catalítico , Eletroquímica , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Nitrato Redutase/química , Periplasma/enzimologia , Rhodobacter sphaeroides/citologia , Rhodobacter sphaeroides/enzimologia , Soluções , Análise Espectral
9.
J Am Chem Soc ; 132(13): 4848-57, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20230028

RESUMO

Hydrogenases catalyze the oxidation and production of H(2). The fact that they could be used in biotechnological devices if they resisted inhibition by O(2) motivates the current research on their inactivation mechanism. Direct electrochemistry has been thoroughly used in this respect but often in a qualitative manner. We propose a new and precise chronoamperometric method for studying the anaerobic inactivation mechanism of hydrogenase, which we apply to the oxygen-tolerant NiFe enzyme from Aquifex aeolicus . We demonstrate that the voltammetric data cannot be used for measuring the reduction potential of the so-called NiB inactive state, even in the small scan rate limit. We show that the inactivation mechanism proposed for standard (oxygen-sensitive) NiFe hydrogenases does not apply in the case of the enzyme from A. aeolicus . In particular, the activation and inactivation reactions cannot follow the same reaction pathway.


Assuntos
Eletroquímica/métodos , Hidrogenase/metabolismo , Oxigênio/metabolismo , Anaerobiose , Archaea/enzimologia , Biocatálise , Hidrogênio/metabolismo , Oxirredução
10.
J Am Chem Soc ; 132(20): 6991-7004, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20441192

RESUMO

The membrane-bound hydrogenase (Hase I) of the hyperthermophilic bacterium Aquifex aeolicus belongs to an intriguing class of redox enzymes that show enhanced thermostability and oxygen tolerance. Protein film electrochemistry is employed here to portray the interaction of Hase I with molecular oxygen and obtain an overall picture of the catalytic activity. Fourier transform infrared (FTIR) spectroscopy integrated with in situ electrochemistry is used to identify structural details of the [NiFe] site and the intermediate states involved in its redox chemistry. We found that the active site coordination is similar to that of standard hydrogenases, with a conserved Fe(CN)(2)CO moiety. However, only four catalytic intermediates could be detected; these correspond structurally to the Ni-B, Ni-SI(a), Ni-C, and Ni-R states of standard hydrogenases. The Ni-SI/Ni-C and Ni-C/Ni-R midpoint potentials are approximately 100 mV more positive than those observed in mesophilic hydrogenases, which may be the reason that A. aeolicus Hase I is more suitable as a catalyst for H(2) oxidation than production. Protein film electrochemistry shows that oxygen inhibits the enzyme by reacting at the active site to form a single species (Ni-B); the same inactive state is obtained under oxidizing, anaerobic conditions. The mechanism of anaerobic inactivation and reactivation in A. aeolicus Hase I is similar to that in standard hydrogenases. However, the reactivation of the former is more than 2 orders of magnitude faster despite the fact that reduction of Ni-B is not thermodynamically more favorable. A scheme for the enzymatic mechanism of A. aeolicus Hase I is presented, and the results are discussed in relation to the proposed models of oxygen tolerance.


Assuntos
Membrana Celular/metabolismo , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/enzimologia , Hidrogenase/metabolismo , Oxigênio/farmacologia , Anaerobiose , Biocatálise , Domínio Catalítico , Eletroquímica , Eletrodos , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidrogenase/química , Cinética , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Potenciometria , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Langmuir ; 26(5): 3372-5, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19947617

RESUMO

The adhesion of poly(dimethylsiloxane) (PDMS) rubber is largely improved by oxygen plasma surface treatment. The thickness of the silica-like surface layer is characterized by performing transmission electron microscopy imagery on microtome slices of welded plasma treated surfaces. The specific double layer contrast can be considered as equal to twice the thickness of the silica-like layer. The thickness measurements combined with strain-induced elastic buckling instability analysis gives an estimate of the elastic modulus of the silica-like layer equal to 1.5 GPa.


Assuntos
Dimetilpolisiloxanos/química , Módulo de Elasticidade , Dióxido de Silício/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
12.
J Mater Sci Mater Med ; 21(3): 955-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20035373

RESUMO

X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS), two surface-sensitive spectroscopic methods, are commonly used to characterize adsorbed protein layers. Principal component analysis (PCA) is a statistical method which aims at reducing the number of variables in complex sets of data while retaining most of the original information. The aim of this paper is to review work carried out in our group regarding the use of PCA with a view to facilitate and deepen the interpretation of ToF-SIMS or XPS spectra acquired on adsorbed protein layers. ToF-SIMS data acquired on polycarbonate membranes after albumin and, or insulin adsorption were treated with PCA. The results reveal the preferential exposure of particular amino acids at the outermost surface depending on the adsorption conditions (nature of the substrate and of the proteins involved, concentration in solution), giving insight into the adsorption mechanisms. PCA was applied on XPS data collected on three different substrates after albumin or fibrinogen adsorption, followed in some cases by a cleaning procedure with oxidizing agents. The results allow samples to be classified according to the nature of the substrate and to the adsorbed amount and, or the level of surface coverage by the protein. Chemical shifts of particular interest are also identified, which may facilitate further peak decomposition. It is useful to recall that the outcome of PCA strongly depends on data selection and normalisation.


Assuntos
Espectroscopia Fotoeletrônica/métodos , Proteínas/química , Adsorção , Albuminas/química , Materiais Biocompatíveis/química , Interpretação Estatística de Dados , Fibrinogênio/química , Humanos , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas/métodos , Oxigênio/química , Análise de Componente Principal , Espectrofotometria/métodos , Propriedades de Superfície
13.
Anal Chem ; 81(8): 2962-8, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19298055

RESUMO

Chronoamperometric experiments with adsorbed electrocatalysts are commonly performed either for analytical purposes or for studying the catalytic mechanism of a redox enzyme. In the context of amperometric sensors, the current may be recorded as a function of time while the analyte concentration is being increased to determine a linearity range. In mechanistic studies of redox enzymes, chronoamperometry proved powerful for untangling the effects of electrode potential and time, which are convoluted in cyclic voltammetric measurements, and for studying the energetics and kinetics of inhibition. In all such experiments, the fact that the catalyst's coverage and/or activity decreases over time distorts the data. This may hide meaningful features, introduce systematic errors, and limit the accuracy of the measurements. We propose a general and surprisingly simple method for correcting for electrocatalyst desorption and inactivation, which greatly increases the precision of chronoamperometric experiments. Rather than subtracting a baseline, this consists in dividing the current, either by a synthetic signal that is proportional to the instant electroactive coverage or by the signal recorded in a control experiment. In the latter, the change in current may result from film loss only or from film loss plus catalyst inactivation. We describe the different strategies for obtaining the control signal by analyzing various data recorded with adsorbed redox enzymes: nitrate reductase, NiFe hydrogenase, and FeFe hydrogenase. In each case we discuss the trustfulness and the benefit of the correction. This method also applies to experiments where electron transfer is mediated, rather than direct, providing the current is proportional to the time-dependent concentration of catalyst.


Assuntos
Artefatos , Biocatálise , Técnicas Eletroquímicas/métodos , Adsorção , Condutividade Elétrica , Enzimas/química , Enzimas/metabolismo , Software
14.
Anal Chem ; 80(16): 6235-44, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18630928

RESUMO

A model alkane molecule, triacontane, is used to assess the effects of condensed gold and silver nanoparticles on the molecular ion yields upon atomic (Ga(+) and In(+)) and polyatomic (C60(+) and Bi3(+)) ion bombardment in metal-assisted secondary ion mass spectrometry (MetA-SIMS). Molecular films spin-coated on silicon were metallized using a sputter-coater system, in order to deposit controlled quantities of gold and silver on the surface (from 0 to 15 nm equivalent thickness). The effects of gold and silver islets condensed on triacontane are also compared to the situation of thin triacontane overlayers on metallic substrates (gold and silver). The results focus primarily on the measured yields of quasi-molecular ions, such as (M - H)(+) and (2M - 2H)(+), and metal-cationized molecules, such as (M + Au)(+) and (M + Ag)(+), as a function of the quantity of metal on the surface. They confirm the absence of a simple rule to explain the secondary ion yield improvement in MetA-SIMS. The behavior is strongly dependent on the specific projectile/metal couple used for the experiment. Under atomic bombardment (Ga(+), In(+)), the characteristic ion yields an increase with the gold dose up to approximately 6 nm equivalent thickness. The yield enhancement factor between gold-metallized and pristine samples can be as large as approximately 70 (for (M - H)(+) under Ga(+) bombardment; 10 nm of Au). In contrast, with cluster projectiles such as Bi3(+) and C60(+), the presence of gold and silver leads to a dramatic molecular ion yield decrease. Cluster projectiles prove to be beneficial for triacontane overlayers spin-coated on silicon or metal substrates (Au, Ag) but not in the situation of MetA-SIMS. The fundamental difference of behavior between atomic and cluster primary ions is tentatively explained by arguments involving the different energy deposition mechanisms of these projectiles. Our results also show that Au and Ag nanoparticles do not induce the same behavior in MetA-SIMS of triacontane. The microstructures of the metallized layers are also different. While metallic substrates provide higher yields than metal islet overlayers in the case of silver, whatever the projectile used, the situation is reversed with gold.

15.
J Phys Chem B ; 112(48): 15478-86, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19006273

RESUMO

Enzymes of the DMSO reductase family use a mononuclear Mo-bis(molybdopterin) cofactor (MoCo) to catalyze a variety of oxo-transfer reactions. Much functional information on nitrate reductase, one of the most studied members of this family, has been gained from EPR spectroscopy, but this technique is not always conclusive because the signature of the MoCo is heterogeneous, and which signals correspond to active species is still unsure. We used site-directed mutagenesis, EPR and protein film voltammetry to demonstrate that the MoCo in R. sphaeroides periplasmic nitrate reductase (NapAB) is subject to an irreversible reductive activation process whose kinetics we precisely define. This activation quantitatively correlates with the disappearance of the so-called "Mo(V) high-g" EPR signal, but this reductive process is too slow to be part of the normal catalytic cycle. Therefore, in NapAB, this most intense and most commonly observed signature of the MoCo arises from a dead-end, inactive state that gives a catalytically competent species only after reduction. This activation proceeds, even without substrate, according to a reduction followed by an irreversible nonredox step, both of which are pH independent. An apparently similar process occurs in other nitrate reductases (both assimilatory and membrane bound), and this also recalls the redox cycling procedure, which activates periplasmic DMSO reductases and simplifies their spectroscopic signatures. Hence we propose that heterogeneity at the active site and reductive activation are common properties of enzymes from the DMSO reductase family. Regarding NapAB, the fact that we could detect no Mo EPR signal upon reoxidizing the fully reduced enzyme suggests that the catalytically active form of the Mo(V) is thermodynamically unstable, as is the case for other enzymes of the DMSO reductase family. Our original approach, which combines spectroscopy and protein film voltammetry, proves useful for discriminating the forms of the active site on the basis of their catalytic properties. This could be applied to other enzymes for which the question arises as to the catalytic relevance of certain long-lived, spectroscopically characterized species.


Assuntos
Proteínas Ferro-Enxofre/química , Molibdênio/química , Nitrato Redutase/química , Oxirredutases/química , Rhodobacter sphaeroides/enzimologia , Adsorção , Algoritmos , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/genética , Micro-Ondas , Mutação , Nitrato Redutase/genética , Oxirredução , Oxirredutases/genética , Potenciometria , Rhodobacter sphaeroides/genética
16.
FEBS Lett ; 581(2): 284-8, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17207484

RESUMO

Cytochrome c nitrite reductase is a multicenter enzyme that uses a five-coordinated heme to perform the six-electron reduction of nitrite to ammonium. In the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774, the enzyme is purified as a NrfA2NrfH complex that houses 14 hemes. The number of closely-spaced hemes in this enzyme and the magnetic interactions between them make it very difficult to study the active site by using traditional spectroscopic approaches such as EPR or UV-Vis. Here, we use both catalytic and non-catalytic protein film voltammetry to simply and unambiguously determine the reduction potential of the catalytic heme over a wide range of pH and we demonstrate that proton transfer is coupled to electron transfer at the active site.


Assuntos
Proteínas de Bactérias/química , Citocromos a1/química , Citocromos c1/química , Desulfovibrio desulfuricans/enzimologia , Heme/química , Nitrato Redutases/química , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Catálise , Citocromos a1/isolamento & purificação , Citocromos c1/isolamento & purificação , Nitrato Redutases/isolamento & purificação , Potenciometria , Prótons
17.
J Phys Chem B ; 111(48): 13632-7, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17988112

RESUMO

In conventional analyses of g approximately 5 signals given by [4Fe-4S](+) clusters with S = 3/2, the effective g values that cannot be measured in the electron paramagnetic resonance (EPR) spectrum are deduced from rhombograms calculated by assuming that the g matrix is isotropic with g(x) = g(y) = g(z) = 2.00. We have shown that when the two low-field peaks corresponding to the Kramers doublets are visible in the spectrum, a new, independent piece of information about the system can be obtained by studying the temperature dependence of the ratio of the area under these peaks. By applying this method to the g approximately 5 signals displayed by NarGHI nitrate reductase, we were able to determine all the parameters of the spin Hamiltonian of FS0 centers with S = 3/2 and to measure accurately their number. Our results indicate that simple analyses based on the assumption of an isotropic g matrix can give rise to very large errors.


Assuntos
Escherichia coli/enzimologia , Proteínas Ferro-Enxofre/química , Nitrato Redutase/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Potenciometria , Temperatura
18.
J Phys Chem B ; 111(34): 10300-11, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17676894

RESUMO

For redox enzymes, the technique called protein film voltammetry makes it possible to determine the entire profile of activity against driving force by having the enzyme exchanging directly electrons with the rotating-disc electrode onto which it is adsorbed. Both the potential location of the catalytic response and its detailed shape report on the sequence of catalytic events, electron transfers and chemical steps, but the models that have been used so far to decipher this signal lack generality. For example, it was often proposed that substrate binding to multiple redox states of the active site may explain that turnover is greater in a certain window of electrode potential, but no fully analytical treatment has been given. Here, we derive (i) the general current equation for the case of reversible substrate binding to any redox states of a two-electron active site (as exemplified by flavins and Mo cofactors), (ii) the quantitative conditions for an extremum in activity to occur, and (iii) the expressions from which the substrate-concentration dependence of the catalytic potential can be interpreted to learn about the kinetics of substrate binding and how this affects the reduction potential of the active site. Not only does slow substrate binding and release make the catalytic wave shape highly complex, but we also show that it can have important consequences which will escape detection in traditional experiments: the position of the wave (this is the driving force that is required to elicit catalysis) departs from the reduction potential of the active site even at the lowest substrate concentration, and this deviation may be large if substrate binding is irreversible. This occurs in the reductive half-cycle of periplasmic nitrate reductase where irreversibility lowers the driving force required to reduce the active site under turnover conditions and favors intramolecular electron transfer from the proximal [4Fe4S]+ cluster to the active site Mo(V).


Assuntos
Proteínas de Bactérias/química , Modelos Químicos , Nitrato Redutase/química , Nitratos/química , Sítios de Ligação , Catálise , Oxirredução , Periplasma/enzimologia , Rhodobacter sphaeroides/enzimologia
19.
J Am Soc Mass Spectrom ; 17(3): 406-14, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16458530

RESUMO

Since the discovery of the Phillips catalysts, there still is much uncertainty concerning their activation, their molecular structure, the nature of the active chromium sites, and the polymerization mechanisms. Surface techniques are not easy to be used for such study according to the nonconductive behavior of the support. Therefore, model Phillips catalyst is elaborated by spin coating a trivalent chromium precursor on a silicon wafer. The surface characterization of this model catalyst is conducted by laser ablation mass spectrometry (LA-MS), laser desorption/ionization mass spectrometry (LDI-MS), and static secondary ion mass spectrometry (s-SIMS), at different steps of its preparation. To validate our approach, a comparison is also made between the model and the real Philips catalyst. Moreover, the model catalyst efficiency for polyethylene synthesis is evaluated and allows us to discuss the validity of the mechanisms previously proposed to explain the catalytic process. The characterization of Phillips model catalyst by mass spectrometry allows us to better understand the activation processes of such catalyst. Depending on the activation temperature, chromium oxide species are formed and anchored at the support surface. They consist mainly in mono-chromium sites at high temperature. The chromium valence is hexavalent. This model catalyst is active for the polymerization of ethylene. A pseudo-oligomer molecular weight distribution is observed by LA-MS, whereas s-SIMS allows us to elucidate the anchorage of the polymer at activate chromium surface sites.


Assuntos
Cromo/química , Polietileno/análise , Polietileno/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Catálise , Lasers
20.
J Mass Spectrom ; 41(4): 527-42, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16541387

RESUMO

Most of the first-row transition-metal oxides, M(A)O(B) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) were examined by static secondary ion mass spectrometry (s-SIMS) and laser ablation/ionization Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS). Positive and negative ions show strong correlation between the studied oxide and the detected cluster ions. Specific M(x)O(y) (+/-) species were systematically observed with both MS techniques for each investigated M(A)O(B) transition-metal oxide. Moreover, the ion composition and ion distribution are greatly dependent on the ionization technique. Laser ablation (LA)/ionization leads to larger cluster ions (ionic species with nearly hundred atoms were in particular detected for Sc2O3 and Y2O3 oxides), whereas hydrogenated, dihydrogenated, and sometimes trihydrogenated species were observed in s-SIMS. However, the ion distribution for a given M(x)O(y) (+/-) ion series (i.e. ions including the same number of metal atoms M) generally presented important similarities in both techniques.Finally, it was demonstrated that the chemical state of metal atoms in the observed ionic species is closely dependent on the metal electronic valence shell. High valence states (+III, +IV, +V, and +VI) are favored for metals with a less-than-half full valence shell configuration, whereas for other first-row transition metals (manganese, iron, cobalt, nickel, copper and zinc) lower metal valence states (0, +I or, +II) are involved.


Assuntos
Compostos Inorgânicos/química , Óxidos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Elementos de Transição/química , Lasers
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa