RESUMO
Obesity must be considered a real pathology. In the world wide, obesity represent one of the major public health issue associated with increased morbidity and mortality. Overweight or obesity, in fact, significantly increases the risk of contracting diseases, such as: arterial hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, cerebral vasculopathy, gallbladder lithiasis, arthropathy, ovarian polycytosis, sleep apnea syndrome, and some neoplasms. Despite numerous informative campaigns, unfortunately, the fight against obesity does not seem to work: in the last years, the prevalence continued to increase. The progressive and rapid increase in the incidence of obesity, which has characterized most of the economically advanced countries in the last decade, has been the main stimulus for the research of the mechanisms underlying this pathology and the related disorders. The aims of this review is to provide a revision of the literature in order to define obesity as diseases, secondly to highlight the limits and the inaccuracy of common tools used for the diagnosis of obesity, and as a third thing to strengthen the concept of the complexity of obesity as a disease among political health care providers. Obesity may be viewed as a multifactorial pathology and chronic low-grade inflammatory disease. In fact, people affected by obesity have greater risk of developing comorbility and morbility, respect to healthy. Hence, the absolute therapeutic benefit is directly proportional to the basic risk. So, internationally interest on early diagnosis of obesity is growing to avoid under- and overdiagnosis consequences. Therefore, the consequences are an aggravation of the disease and an increase in obesity related pathology like diabetes, cardiovascular disease, and cancer. The most widely used parameter for diagnosis, body mass index (BMI) is not suitable for assessing the body fat. In fact, several studies demonstrate that BMI alone cannot define obesity, which consists not so much in weight gain as in excess fat mass. The use of suitable tools for the assessment of fat mass percentage combined with clinical and genetic analysis allowed to identify different phenotypes of obesity, which explain the various paradoxes of obesity. It is essential to adopt all possible strategies to be able to combat obesity, ameliorate the suffering of patients, and reduce the social and treatment costs of obesity.
Assuntos
Obesidade/patologia , Índice de Massa Corporal , Comorbidade , Humanos , Obesidade/diagnóstico , Obesidade/epidemiologia , Fenótipo , Prevalência , Fatores de RiscoRESUMO
Cystinuria is an autosomal recessive disease that causes L-cystine precipitation in urine and nephrolithiasis. Disease severity is highly variable; it is known, however, that cystinuria has a more severe course in males. The aim of this study was to compare L-cystine metastability in first-morning urine collected from 24 normal female and 24 normal male subjects. Samples were buffered at pH 5 and loaded with L-cystine (0.4 and 4 mM final concentration) to calculate the amount remaining in solution after overnight incubation at 4 °C; results were expressed as Z scores reflecting the L-cystine solubility in each sample. In addition, metabolomic analyses were performed to identify candidate compounds that influence L-cystine solubility. L-cystine solubility Z score was +0.44 ± 1.1 and -0.44 ± 0.70 in female and male samples, respectively (p < 0.001). Further analyses showed that the L-cystine solubility was independent from urine concentration but was significantly associated with low urinary excretion of inosine (p = 0.010), vanillylmandelic acid (VMA) (p = 0.015), adenosine (p = 0.029), and guanosine (p = 0.032). In vitro L-cystine precipitation assays confirmed that these molecules induce higher rates of L-cystine precipitation in comparison with their corresponding dideoxy molecules, used as controls. In silico computational and modeling analyses confirmed higher binding energy of these compounds. These data indicate that urinary excretion of nucleosides and VMA may represent important factors that modulate L-cystine solubility and may represent new targets for therapy in cystinuria.
Assuntos
Cisteína/urina , Adenosina/urina , Adulto , Precipitação Química , Cisteína/química , Cistinúria/urina , Feminino , Guanosina/urina , Humanos , Inosina/urina , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Solubilidade , Ácido Vanilmandélico/urinaRESUMO
BACKGROUND: Dyslipidemia and abnormal phospholipid metabolism are frequent in uremic patients and increase their risk of cardiovascular disease (CVD): ω-3 polyunsaturated fatty acids (PUFAs) may reduce this risk in the general population. In this study we compared the plasma and erythrocyte cell membrane composition of PUFAs in a group of Caucasian hemodialysis (HD) patients and in a control group of healthy subjects and evaluated the erythrocyte/cell membrane fatty acid ratio as a marker of the dietary intake of phospholipids. The relationship between ω-3 and ω-6 fatty acids and the possible differences in PUFAs concentrations were also investigated. METHODS AND RESULTS: After obtaining a fully informed consent, a total of ninety-nine HD patients and 160 non uremic control subjects from "Tor Vergata" University Hospital were enrolled into the study. None of them took antioxidant drugs or dietary supplements for at least 90 days prior to the observation. Blood samples were analysed by gas-chromatographic coupled to a mass spectrometric detector.The daily intake of total calories, proteins, lipids and carbohydrates is significantly lower in HD patients than in controls (p < 0.001). Most plasma and erythrocyte PUFA were also reduced significantly in HD patients (p < 0.001). CONCLUSIONS: Our results suggest that many classes of PUFAs are lacking in HD patients, due to the removal of nutrients during the dialysis and to persistent malnutrition. A dietary treatment addressed to increase plasma ω-3 PUFAs and to optimize ω-6/ω-3 ratio may exert a protective action and reduce the risk of CVD in HD patient.
Assuntos
Membrana Eritrocítica/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Adulto , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/sangue , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Masculino , Diálise Renal , Triglicerídeos/sangue , Triglicerídeos/metabolismoRESUMO
BACKGROUND: Recent data show that the rising consumption of cannabis has increased the rate of acute intoxication in pediatric age. Common patterns of pediatric poisoning consist of exploratory ingestions in younger children. A history of poisoning is often not provided; therefore, it could be advisable to use an objective biological marker. The clinical presentation of occult ingestion can range from asymptomatic to critically ill. Neurological involvement is one of the most described presentations. The goal of our study was to examine the presentation of acute cannabis intoxication in a sample of 13 pediatric patients under 3 years. METHODS: A retrospective epidemiological investigation on acute cannabinoid intoxication was conducted on children under 3 years, recruited between 2016 and 2020. All patients were tested for urine drug screening suspecting poisoning as reason for Emergency Department (ED) admission. RESULTS: Thirteen of forty-eight patients tested (27%) were positive for Tetrahydrocannabinol (THC). Ingestion was the route of intoxication in all of them. Only in five cases the possible accidental intake of cannabinoids was promptly declared. Twelve children accessed on ED due to a neurological symptomatology not attributable to known causes in the medical history. CONCLUSIONS: Differential diagnosis for abuse drugs exposure in young children is broad: the urine drug screening plays a central role for confirmation of the diagnostic suspicion and identification of the specific substance. A positive result combined with a history of potential access to cannabis could prevent unnecessary, invasive, expensive procedures. When identified, the management is predominantly supportive. In this article, we want to emphasize the importance of always considering drug intoxication in children with acute neurological symptoms especially in cases of ambiguous familiar or social context. Further studies will be needed to better characterize the alarm bells for intoxication and to identify a strategy for the prevention of unintentional cannabinoid intoxication.
RESUMO
BACKGROUND & AIMS: Obesity-driven, low-grade inflammation affects systemic metabolic function and can lead to insulin resistance, hepatic steatosis, and atherosclerosis. Decreased expression of tissue inhibitor of metalloproteinase 3 (Timp3) is a catalyst for insulin resistance and inflammation. Timp3 is a natural inhibitor of matrix metalloproteinases, tumor necrosis factor-alpha-converting enzyme (TACE), and vascular endothelial growth factor receptor 2, and therefore could affect signaling processes involved in inflammation and angiogenesis. METHODS: We assessed the effects of Timp3 on inflammation, tissue remodeling, and intermediary metabolism in mice, under conditions of environmental stress (high-fat diet), genetic predisposition to insulin resistance (insulin receptor [Insr] haploinsufficiency), and varying levels of inflammation (Timp3 or Tace deficiencies). Metabolic tests, immunohistochemistry, real-time polymerase chain reaction, and immunoblotting were used to compare data from wild-type, Insr(+/-), Timp3(-/-), Insr(+/-)Timp3(-/-), and Insr(+/-)Tace(+/-) mice placed on high-fat diets for 10 weeks. RESULTS: Insr(+/-)Timp3(-/-) mice showed a higher degree of adipose and hepatic inflammation compared with wild-type, Insr(+/-), Timp3(-/-), and Insr(+/-)Tace(+/-) mice. In particular, the Insr(+/-)Timp3(-/-) mice developed macrovesicular steatosis and features of severe nonalcoholic fatty liver disease, including lobular and periportal inflammation, hepatocellular ballooning, and perisinusoidal fibrosis. These were associated with increased expression of inflammatory and steatosis markers, including suppressor of cytokine signaling 3 and stearoyl CoA desaturase 1, in both liver and adipose tissue. Interestingly, Insr(+/-)Tace(+/-) mice had a nearly opposite phenotype. CONCLUSIONS: Timp3, possibly through its regulation of TACE, appears to have a role in the pathogenesis of fatty liver disease associated with obesity.
Assuntos
Fígado Gorduroso/genética , Paniculite/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Proteínas ADAM/deficiência , Proteínas ADAM/metabolismo , Proteína ADAM17 , Tecido Adiposo Branco/metabolismo , Animais , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Predisposição Genética para Doença/genética , Resistência à Insulina/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Paniculite/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismoRESUMO
Hepcidin is a 25-amino acid peptide, derived from cleavage of an 84 amino acid pro-peptide produced predominantly by hepatocytes. This molecule, encoded by the hepcidin antimicrobial peptide (HAMP) gene shows structural and functional properties consistent with a role in innate immunity. Moreover, as demonstrated in mice and humans, hepcidin is a major regulator of iron metabolism, and acts by binding to ferroportin and controlling its concentration and trafficking. In this study we investigated the influence that mutations in HAMP and/or hemocromatosis (HFE) genes might exert on iron metabolism in a group of poly-transfused thalassemic patients in preparation for bone marrow transplantation. Our results showed that the presence of the c.-582 A>G polymorphism (rs10421768) placed in HAMP promoter (HAMP-P) might play a role in iron metabolism, perhaps varying the transcriptional activation that occurs through E-boxes located within the promoter.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Sobrecarga de Ferro/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Talassemia beta/genética , Adolescente , Adulto , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Transfusão de Sangue , Criança , Feminino , Hepcidinas , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/terapia , Masculino , Camundongos , Talassemia beta/metabolismo , Talassemia beta/terapiaRESUMO
Phytosterols (beta-sitosterol, cholestanol and campesterol) and cholesterol precursors (desmosterol and lathosterol), have been suggested as important biochemical markers of intestinal cholesterol absorption and liver biosynthesis, respectively, and as useful clinical parameters in the study of hypercholesterolemia, beta-sitosterolemia, atherosclerosis and cardiovascular disease, including pharmacological response to hypolipidemic agents. We developed an optimised analytical method for the simultaneous analysis of cholestanol, desmosterol, lathosterol, campesterol and beta-sitosterol in plasma using capillary gas chromatography coupled to mass spectrometry (GC-MS) with multiple selected ion monitoring (SIM). This method is based on the alkaline hydrolysis of sterol esters, extraction of free sterols and derivatization. The recovery of all sterols was in the range 76-101%. Within-day relative standard deviations (R.S.Ds.) and the between-day R.S.Ds. of cholestanol, desmosterol, lathosterol, campesterol and beta-sitosterol were less than 8%, and their plasma levels in 161 normal subjects were (mean+/-S.D.) 4.73+/-2.57, 2.37+/-1.04, 6.23+/-3.14, 3.67+/-1.95 and 5.92+/-3.62 micromol/l, respectively.
Assuntos
Colesterol/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fitosteróis/sangue , Colesterol/química , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Phospholipids play an essential role in cell membrane structure and function. The length and number of double bonds of fatty acids in membrane phospholipids are main determinants of fluidity, transport systems, activity of membrane-bound enzymes, and susceptibility to lipid peroxidation. The fatty acid profile of serum lipids, especially the phospholipids, reflects the fatty acid composition of cell membranes. Moreover, long-chain n-3 polyunsatured fatty acids decrease very-low-density lipoprotein assembly and secretion reducing triacylglycerol production. N-6 and n-3 polyunsatured fatty acids are the precursors of signalling molecules, termed "eicosanoids," which play an important role in the regulation of inflammation. Eicosanoids derived from n-6 polyunsatured fatty acids have proinflammatory actions, while eicosanoids derived from n-3 polyunsatured fatty acids have anti-inflammatory ones. Previous studies showed that inflammation contributes to both the onset and progression of atherosclerosis: actually, atherosclerosis is predominantly a chronic low-grade inflammatory disease of the vessel wall. Several studies suggested the relationship between long-chain n-3 polyunsaturated fatty acids and inflammation, showing that fatty acids may decrease endothelial activation and affect eicosanoid metabolism.
RESUMO
PROJECT: Oxidative stress (OS) is enhanced in hemodialysis (HD) patients. Lipid peroxidation and oxidative damage to glycids, proteins and nucleic acids are the main consequences of OS and are associated with increased cardiovascular risk. Vitamin E and glutathione peroxidase (GSH-Px) represent the main antioxidant systems in human cells. Selenium (Se), bound to the active sites of GSH-Pxs, plays a critical role in this antioxidant defence system. Statins are widely used and extensively investigated in the prevention of cardiovascular disease, notably in high-risk subjects. Several studies show antioxidant effects of statins not related to their lipid-lowering action. Our study aimed to compare serum Se concentration in ESRD patients on maintenance HD and in homogeneous healthy subjects and to investigate whether chronic treatment with statins may interfere with serum Se concentration in HD patients. PROCEDURE: A total of 103 HD patients and 69 healthy subjects were enrolled; HD patients were divided into patients who were not treated with statins (group A) and patients who assumed statins since 6 months at least (group B). Serum Se was determined by atomic absorption spectrometry. RESULTS: Serum Se was significantly lower in HD patients of group A compared with healthy subjects (81.65+/-19.66 Vs. 96.47+/-15.62 mcg/L, p<0.0040). However, in HD patients who assumed statins serum, Se was significantly higher than in HD patients who did not (111.83+/-18.82 vs. 81.65+/-19.66 mcg/L, p<0.0001). CONCLUSIONS: Our results suggest that in HD patients chronic treatment with statins is related to higher-serum Se concentration.
Assuntos
Anticolesterolemiantes/uso terapêutico , Antioxidantes/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Falência Renal Crônica/terapia , Selênio/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Diálise Renal , Uremia/terapiaRESUMO
Bile acids play a pivotal role in the metabolism of cholesterol and lipids. Their blood concentrations are important prognostic and diagnostic indicators of hepatobiliary and intestinal dysfunction. This class of molecules comprises a heterogeneous group of compounds with a common cholesterol scaffold. Recently, the introduction of liquid chromatography coupled to tandem mass spectrometry methods has revealed an innovative path in the quantisation of specific bile acids in biological specimens. A robust and sensitive method has been developed based on high performance liquid chromatography separation coupled to an electrospray triple-quadrupole mass spectrometer. Human plasma samples were analysed on a C18 reverse-phase column. The elution profiles were monitored in multiple reaction-monitoring mode, quantifying and identifying each analyte by its own unique precursor to product patterns. A linear correlation over a broad range of bile acid concentrations (0.1-100 microM) was observed. The average recovery period for all of the analysed bile acids was 98 +/- 3%. Intra-day and inter-day precision averages were 2% and 5.4%, respectively. The determination was achieved within a single chromatographic run for all unconjugated, glycine- and taurine-conjugated isomeric forms of bile acids. As a proof of principle this method has been validated on a small subset of cholestatic patients (n = 7) and compared to appropriate clinical controls (n = 10). Based upon our encouraging experimental results, the described HPLC separation coupled to tandem mass spectrometry method for the analysis of bile acids in biological samples is deemed a robust and accurate procedure. Consequently, we propose this technique as a suitable candidate method for the identification and quantitation of bile acids in routine analysis.
Assuntos
Ácidos e Sais Biliares/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Bile/química , Calibragem , Humanos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Intravesical electromotive administration of local anesthetics is clinically successful but electrochemistry, cost and effectiveness limit the choice of drugs to diluted lidocaine HCl 4% mixed with epinephrine. These studies address the stability of lidocaine and epinephrine both over time and when exposed to electric current, i.e. transport rates with passive diffusion and electromotive administration. The drug mixture used was 50 ml lidocaine 4%, 50 ml H2O and 1 ml epinephrine 1/1000. For stability, the solution was placed either in bowls for 7 days or in a two chamber cell with the donor compartment (drugs) separated from the receptor compartment (NaCl solution) by a viable pig bladder wall. This was subjected to 30 mA for 45 min. Stability was measured with mass spectrometry. The cell was also used to determine transport rates with passive diffusion and currents of 20 mA and 30 mA, over 20, 30 and 45 min. Drug measurements in both compartments and bladder were made with HPLC. Lidocaine remained stable throughout the 7 days, epinephrine on day 1 only and both drugs were stable with 30 mA for 45 min. Comparing 20 mA and 30 mA with passive diffusion, there were significant differences in 6/6 donor compartment lidocaine levels, 4/6 receptor compartment levels and 6/6 bladder tissue levels and also in 6/6 epinephrine donor levels and 6/6 tissue levels. The combination lidocaine and epinephrine remains stable for 1 day and when exposed to 30 mA for 45 min. Electric current accelerates the transport of lidocaine and epinephrine.