Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Chem ; 18(1): 9, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191485

RESUMO

Pyrazole-bearing compounds are known for their diverse pharmacological effects including potent antileishmanial and antimalarial activities. Herein, some hydrazine-coupled pyrazoles were successfully synthesized and their structures were verified by employing elemental microanalysis, FTIR, and 1H NMR techniques. The in vitro antileishmanial and in vivo antimalarial activities of the synthesized pyrazole derivatives (9-15) were evaluated against Leishmania aethiopica clinical isolate and Plasmodium berghei infected mice, respectively. The result revealed that compound 13 displayed superior antipromastigote activity (IC50 = 0.018) that was 174- and 2.6-fold more active than the standard drugs miltefosine (IC50 = 3.130) and amphotericin B deoxycholate (IC50 = 0.047). The molecular docking study conducted on Lm-PTR1, complexed with Trimethoprim was acquired from the Protein Data Bank (PDB ID:2bfm), justified the better antileishmanial activity of compound 13. Furthermore, the target compounds 14 and 15 elicited better inhibition effects against Plasmodium berghei with 70.2% and 90.4% suppression, respectively. In conclusion, the hydrazine-coupled pyrazole derivatives may be considered potential pharmacophores for the preparation of safe and effective antileishmanial and antimalarial agents.

2.
BMC Chem ; 16(1): 107, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461074

RESUMO

Quinazolinones are a diverse group of nitrogen-containing heterocyclic compounds with promising antimalarial and antileishmanial activities. Herein, some 3-aryl-2-styryl substituted-4(3H)-quinazolinones were synthesized via cyclization, condensation, and hydrolysis reactions. 1H NMR, FTIR and elemental microanalysis was used to verify the structures of the synthesized compounds. The in vivo antimalarial and in vitro antileishmanial activities of the target compounds were investigated using mice infected with Plasmodium berghi ANKA and Leishmania donovani strain, respectively. Among the test compounds, 8 and 10 showed better antimalarial activities with percent suppression of 70.01 and 74.18, respectively. In addition, (E)-2-(4-nitrostyryl)-3-phenylquinazolin-4(3H)-one (6) showed promising antileishmanial activity (IC50 = 0.0212 µg/mL). It is two and 150 times more active than the standard drugs amphotericin B deoxycholate (IC50 = 0.0460 µg/mL) and miltefosine (IC 50 = 3.1911 µg/mL), respectively. Its superior in vitro antileishmanial activity was supported by a molecular docking study conducted in the active site of Lm-PTR1. Overall, the synthesized 3-aryl-2-styryl substituted-4(3H)-quinazolinones showed promising antileishmanial and antimalarial activities and are desirable scaffolds for the synthesis of different antileishmanial and antimalarial agents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa