Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085523

RESUMO

The focus of this paper is the realization and verification of a modified fiber bundle pull-out test setup to estimate the adhesion properties between threads and elastic matrix materials with a more realistic failure mode than single fiber debond techniques. This testing device including a modified specimen holder provides the basis for an adequate estimation of the interlaminar adhesion of fiber bundles including the opportunity of a faster, easier, and more economic handling compared to single fiber tests. The verification was done with the single-fiber and microbond test. Overall, the modified test setup showed the typical pull-out behavior, and the relative comparability between different test scales is given.

2.
Polymers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825050

RESUMO

The aim of this work was to analyze the influence of fibers on the mechanical behavior of fiber-reinforced elastomers under cyclic loading. Thus, the focus was on the characterization of structure-property interactions, in particular the dynamic mechanical and viscoelastic behavior. Endless twill-woven glass fibers were chosen as the reinforcement, along with silicone as the matrix material. For the characterization of the flexible composites, a novel testing device was developed. Apart from the conventional dynamic mechanical analysis, in which the effect of the fiber orientation was also considered, modified step cycle tests were conducted under tensile loading. The material viscoelastic behavior was studied, evaluating both the stress relaxation response and the capability of the material to dissipate energy under straining. The effects of the displacement rate of the strain level, the amplitude of the strain applied in the loading-unloading step cycle test, and the number of the applied cycles were evaluated. The results revealed that an optimized fiber orientation leads to 30-fold enhanced stiffness, along with 10 times higher bearable stress. The findings demonstrated that tailored reinforced elastomers with endless fibers have a strong influence on the mechanical performance, affecting the structural properties significantly.

3.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374154

RESUMO

The interface between the reinforcement and surrounding matrix in a fibrous composite is decisive and critical for maintaining component performance, durability, and mechanical structure properties for load coupling assessment, especially for highly flexible composite materials. The clear trend towards tailored solutions reveals that an in-depth knowledge on surface treating methods to enhance the fiber-matrix interfacial interaction and adhesion properties for an optimized load transfer needs to be ensured. This research aims to quantify the effect of several surface treatments for glass fibers applied in endless fiber-reinforced elastomers with pronounced high deformations. Due to this, the glass fiber surface is directly modified with selected sizings, using a wet chemical treatment, and characterized according to chemical and mechanical aspects. For this purpose, the interfacial adhesion performance between fibers and the surrounding matrix material is investigated by a modified fiber pull-out device. The results clearly show that an optimized surface treatment improves the interface strength and chemical bonding significantly. The fiber pull-out test confirms that an optimized fiber-matrix interface can be enhanced up to 85% compared to standard surface modifications, which distinctly provides the basis of enhanced performances on the component level. These findings were validated by chemical analysis methods and corresponding optical damage analysis.

4.
Polymers (Basel) ; 12(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255503

RESUMO

The focus of this research is to quantify the effect of load-coupling mechanisms in anisotropic composites with distinct flexibility. In this context, the study aims to realize a novel testing device to investigate tension-twist coupling effects. This test setup includes a modified gripping system to handle composites with stiff fibers but hyperelastic elastomeric matrices. The verification was done with a special test plan considering a glass textile as reinforcing with different lay-ups to analyze the number of layers and the influence of various fiber orientations onto the load-coupled properties. The results demonstrated that the tension-twist coupling effect strongly depends on both the fiber orientation and the considered reinforcing structure. This enables twisting angles up to 25° with corresponding torque of about 82.3 Nmm, which is even achievable for small lay-ups with 30°/60° oriented composites with distinct asymmetric deformation. For lay-ups with ±45° oriented composites revealing a symmetric deformation lead, as expected, no tension-twist coupling effect was seen. Overall, these findings reveal that the described novel test device provides the basis for an adequate and reliable determination of the load-coupled material properties between stiff fibers and hyperelastic matrices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa