Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538141

RESUMO

The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and ß frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.


Assuntos
Magnetoencefalografia , Córtex Motor , Destreza Motora , Humanos , Masculino , Feminino , Adulto , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Adulto Jovem , Magnetoencefalografia/métodos , Ritmo alfa/fisiologia , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia
2.
Neuroimage ; 244: 118616, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582947

RESUMO

As we move in the environment, attention shifts to novel objects of interest based on either their sensory salience or behavioral value (reorienting). This study measures with magnetoencephalography (MEG) different properties (amplitude, onset-to-peak duration) of event-related desynchronization/synchronization (ERD/ERS) of oscillatory activity during a visuospatial attention task designed to separate activity related to reorienting vs. maintaining attention to the same location, controlling for target detection and response processes. The oscillatory activity was measured both in fMRI-defined regions of interest (ROIs) of the dorsal attention (DAN) and visual (VIS) networks, previously defined as task-relevant in the same subjects, or whole-brain in a pre-defined set of cortical ROIs encompassing the main brain networks. Reorienting attention (shift cues) as compared to maintaining attention (stay cues) produced a temporal sequence of ERD/ERS modulations at multiple frequencies in specific anatomical regions/networks. An early (∼330 ms), stronger, transient theta ERS occurred in task-relevant (DAN, VIS) and control networks (VAN, CON, FPN), possibly reflecting an alert/reset signal in response to the cue. A more sustained, behaviorally relevant, low-beta band ERD peaking ∼450 ms following shift cues (∼410 for stay cues) localized in frontal and parietal regions of the DAN. This modulation is consistent with a control signal re-routing information across visual hemifields. Contralateral vs. ipsilateral shift cues produced in occipital visual regions a stronger, sustained alpha ERD (peak ∼470 ms) and a longer, transient high beta/gamma ERS (peak ∼490 ms) related to preparatory visual modulations in advance of target occurrence. This is the first description of a cascade of oscillatory processes during attentional reorienting in specific anatomical regions and networks. Among these processes, a behaviorally relevant beta desynchronization in the FEF is likely associated with the control of attention shifts.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Magnetoencefalografia , Masculino , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Adulto Jovem
3.
Neuroimage ; 230: 117781, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497772

RESUMO

The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent functional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported behaviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed a visuospatial attention task as compared to central fixation (Spadone et al., 2015). Here we use magnetoencephalography (MEG) in the same group of subjects to identify the electrophysiological correlates of the BOLD-FC modulation found in our previous work. While BOLD-FC topography, separately at rest and during visual attention, corresponded to neuromagnetic Band-Limited Power (BLP) correlation in the alpha and beta bands (8-30 Hz), BOLD-FC modulations evoked by performing the visual attention task (Spadone et al. 2015) did not match any specific oscillatory band BLP modulation. Conversely, following the application of an orthogonal spatial decomposition that identifies common inter-subject co-variations, we found that attention-rest BOLD-FC modulations were recapitulated by multi-spectral BLP-FC components. Notably, individual variability of alpha connectivity between Frontal Eye Fields and visual occipital regions, jointly with decreased interaction in the Visual network, correlated with visual discrimination accuracy. In summary, task-rest BOLD connectivity modulations match multi-spectral MEG BLP connectivity.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Consumo de Oxigênio/fisiologia , Percepção Espacial/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Distribuição Aleatória , Percepção Visual/fisiologia , Adulto Jovem
4.
Neurol Sci ; 41(12): 3503-3515, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683566

RESUMO

This review focuses on new and/or less standardized event-related potentials methods, in order to improve their knowledge for future clinical applications. The olfactory event-related potentials (OERPs) assess the olfactory functions in time domain, with potential utility in anosmia and degenerative diseases. The transcranial magnetic stimulation-electroencephalography (TMS-EEG) could support the investigation of the intracerebral connections with very high temporal discrimination. Its application in the diagnosis of disorders of consciousness has achieved recent confirmation. Magnetoencephalography (MEG) and event-related fields (ERF) could improve spatial accuracy of scalp signals, with potential large application in pre-surgical study of epileptic patients. Although these techniques have methodological limits, such as high inter- and intraindividual variability and high costs, their diffusion among researchers and clinicians is hopeful, pending their standardization.


Assuntos
Neurociência Cognitiva , Encéfalo , Eletroencefalografia , Potenciais Evocados , Humanos , Itália , Magnetoencefalografia , Psicofisiologia , Reprodutibilidade dos Testes
5.
Neurol Sci ; 41(10): 2711-2735, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32388645

RESUMO

Event-related potentials (ERPs) are obtained from the electroencephalogram (EEG) or the magnetoencephalogram (MEG, event-related fields (ERF)), extracting the activity that is time-locked to an event. Despite the potential utility of ERP/ERF in cognitive domain, the clinical standardization of their use is presently undefined for most of procedures. The aim of the present review is to establish limits and reliability of ERP medical application, summarize main methodological issues, and present evidence of clinical application and future improvement. The present section of the review focuses on well-standardized ERP methods, including P300, Contingent Negative Variation (CNV), Mismatch Negativity (MMN), and N400, with a chapter dedicated to laser-evoked potentials (LEPs). One section is dedicated to proactive preparatory brain activity as the Bereitschaftspotential and the prefrontal negativity (BP and pN). The P300 and the MMN potentials have a limited but recognized role in the diagnosis of cognitive impairment and consciousness disorders. LEPs have a well-documented usefulness in the diagnosis of neuropathic pain, with low application in clinical assessment of psychophysiological basis of pain. The other ERP components mentioned here, though largely applied in normal and pathological cases and well standardized, are still confined to the research field. CNV, BP, and pN deserve to be largely tested in movement disorders, just to explain possible functional changes in motor preparation circuits subtending different clinical pictures and responses to treatments.


Assuntos
Neurociência Cognitiva , Eletroencefalografia , Encéfalo , Potenciais Evocados , Feminino , Humanos , Itália , Masculino , Psicofisiologia , Reprodutibilidade dos Testes
6.
J Neurosci ; 38(15): 3858-3871, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29555851

RESUMO

Networks hubs represent points of convergence for the integration of information across many different nodes and systems. Although a great deal is known on the topology of hub regions in the human brain, little is known about their temporal dynamics. Here, we examine the static and dynamic centrality of hub regions when measured in the absence of a task (rest) or during the observation of natural or synthetic visual stimuli. We used Magnetoencephalography (MEG) in humans (both sexes) to measure static and transient regional and network-level interaction in α- and ß-band limited power (BLP) in three conditions: visual fixation (rest), viewing of movie clips (natural vision), and time-scrambled versions of the same clips (scrambled vision). Compared with rest, we observed in both movie conditions a robust decrement of α-BLP connectivity. Moreover, both movie conditions caused a significant reorganization of connections in the α band, especially between networks. In contrast, ß-BLP connectivity was remarkably similar between rest and natural vision. Not only the topology did not change, but the joint dynamics of hubs in a core network during natural vision was predicted by similar fluctuations in the resting state. We interpret these findings by suggesting that slow-varying fluctuations of integration occurring in higher-order regions in the ß band may be a mechanism to anticipate and predict slow-varying temporal patterns of the visual environment.SIGNIFICANCE STATEMENT A fundamental question in neuroscience concerns the function of spontaneous brain connectivity. Here, we tested the hypothesis that topology of intrinsic brain connectivity and its dynamics might predict those observed during natural vision. Using MEG, we tracked the static and time-varying brain functional connectivity when observers were either fixating or watching different movie clips. The spatial distribution of connections and the dynamics of centrality of a set of regions were similar during rest and movie in the ß band, but not in the α band. These results support the hypothesis that the intrinsic ß-rhythm integration occurs with a similar temporal structure during natural vision, possibly providing advanced information about incoming stimuli.


Assuntos
Ritmo beta , Encéfalo/fisiologia , Percepção Visual , Adulto , Ritmo alfa , Movimentos Oculares , Feminino , Humanos , Magnetoencefalografia , Masculino , Visão Ocular
7.
Neuroimage ; 184: 335-348, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30237036

RESUMO

A fundamental question in systems neuroscience is how endogenous neuronal activity self-organizes during particular brain states. Recent neuroimaging studies have demonstrated systematic relationships between resting-state and task-induced functional connectivity (FC). In particular, continuous task studies, such as movie watching, speak to alterations in coupling among cortical regions and enhanced fluctuations in FC compared to the resting-state. This suggests that FC may reflect systematic and large-scale reorganization of functionally integrated responses while subjects are watching movies. In this study, we characterized fluctuations in FC during resting-state and movie-watching conditions. We found that the FC patterns induced systematically by movie-watching can be explained with a single principal component. These condition-specific FC fluctuations overlapped with inter-subject synchronization patterns in occipital and temporal brain regions. However, unlike inter-subject synchronization, condition-specific FC patterns were characterized by increased correlations within frontal brain regions and reduced correlations between frontal-parietal brain regions. We investigated these condition-specific functional variations as a shorter time scale, using time-resolved FC. The time-resolved FC showed condition-specificity over time; notably when subjects watched both the same and different movies. To explain self-organisation of global FC through the alterations in local dynamics, we used a large-scale computational model. We found that condition-specific reorganization of FC could be explained by local changes that engendered changes in FC among higher-order association regions, mainly in frontal and parietal cortices.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Filmes Cinematográficos , Rede Nervosa/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise de Componente Principal , Adulto Jovem
8.
Neuroimage ; 180(Pt B): 534-546, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29024792

RESUMO

Our behavior entails a flexible and context-sensitive interplay between brain areas to integrate information according to goal-directed requirements. However, the neural mechanisms governing the entrainment of functionally specialized brain areas remain poorly understood. In particular, the question arises whether observed changes in the regional activity for different cognitive conditions are explained by modifications of the inputs to the brain or its connectivity? We observe that transitions of fMRI activity between areas convey information about the tasks performed by 19 subjects, watching a movie versus a black screen (rest). We use a model-based framework that explains this spatiotemporal functional connectivity pattern by the local variability for 66 cortical regions and the network effective connectivity between them. We find that, among the estimated model parameters, movie viewing affects to a larger extent the local activity, which we interpret as extrinsic changes related to the increased stimulus load. However, detailed changes in the effective connectivity preserve a balance in the propagating activity and select specific pathways such that high-level brain regions integrate visual and auditory information, in particular boosting the communication between the two brain hemispheres. These findings speak to a dynamic coordination underlying the functional integration in the brain.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Filmes Cinematográficos , Vias Neurais/fisiologia , Estimulação Luminosa , Descanso/fisiologia , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 112(26): 8112-7, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080395

RESUMO

Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.


Assuntos
Atenção/fisiologia , Visão Ocular/fisiologia , Adulto , Animais , Comportamento Animal , Encéfalo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Adulto Jovem
10.
Nat Methods ; 9(3): 277-82, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306809

RESUMO

Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Haplorrinos/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Animais , Humanos , Especificidade da Espécie
11.
Eur J Neurosci ; 40(2): 2378-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24716878

RESUMO

Studies indicate that physical and social pain may share some mechanisms and neural correlates. Nothing is known, however, on whether the neural activity in the nociceptive system, as indexed by laser-evoked potentials (LEPs), is modified when suffering the consequences of a conspecific violating social norms. To explore this issue, we created an interaction scenario where participants could gain money by performing a time-estimation task. On each win-trial, another player connected online could arbitrarily decide to keep the participant's pay-off for him- or herself. Thus, participants knew that monetary loss could occur because of their own failure in performing the task or because of the inequitable behavior of another individual. Moreover, participants were asked to play for themselves or on behalf of a third party. In reality, the win/loss events were entirely decided by an ad hoc programmed computer. At the end of the interaction, participants reported if they believed the game-playing interaction was real. Results showed that the loss due to the opponent's inequitable behavior brought about a reduction both in pain intensity self-reports and in the amplitude of LEPs' components (i.e., N2, N2/P2, P2a, P2b). Importantly, both the behavioral and neurophysiological effects were found in the participants who believed their deserved payoff was stolen by their opponent. Furthermore, reduction of vertex components was present only when the inequitable behavior was directed toward the self. These results suggest that, far from being a private experience, pain perception might be modulated by the social saliency of interpersonal interactions.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Evocados por Laser , Percepção da Dor , Reforço por Recompensa , Adulto , Feminino , Humanos , Masculino
12.
Brain Sci ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38539671

RESUMO

About one-third of stroke survivors present unilateral spatial neglect (USN) that negatively impacts the rehabilitation outcome. We reported the study protocol and usability results of an eye-tracking (ET) biofeedback immersive virtual reality (iVR) protocol. Healthy controls and stroke patients with and without USN underwent a single session of the three iVR tasks. The system usability scale (SUS), adverse events (AEs), and ET data were collected and analyzed via parametric analysis. Twelve healthy controls (six young adults and six older adults) and seven patients with a diagnosis of single ischemic stroke (four without USN and three with confirmed diagnosis of USN) completed the usability investigation. SUS results showed good acceptability of the system for healthy controls and stroke patients without USN. ET results showed a lower performance for patients with USN concerning healthy controls and stroke patients without USN, in particular in the exploration of the left visual field. The results showed that the proposed iVR-ET biofeedback protocol is a safe and well-tolerated technique in patients with USN. The real-time feedback can induce a performance response supporting its investigation such as a treatment approach.

13.
Sci Rep ; 13(1): 9451, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296243

RESUMO

In everyday activities, humans move alike to manipulate objects. Prior works suggest that hand movements are built by a limited set of basic building blocks consisting of a set of common postures. However, how the low dimensionality of hand movements supports the adaptability and flexibility of natural behavior is unknown. Through a sensorized glove, we collected kinematics data from thirty-six participants preparing and having breakfast in naturalistic conditions. By means of an unbiased analysis, we identified a repertoire of hand states. Then, we tracked their transitions over time. We found that manual behavior can be described in space through a complex organization of basic configurations. These, even in an unconstrained experiment, recurred across subjects. A specific temporal structure, highly consistent within the sample, seems to integrate such identified hand shapes to realize skilled movements. These findings suggest that the simplification of the motor commands unravels in the temporal dimension more than in the spatial one.


Assuntos
Mãos , Desempenho Psicomotor , Humanos , Movimento , Postura , Fenômenos Biomecânicos
14.
Neuroscientist ; 27(2): 184-201, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32538310

RESUMO

The regularity of the physical world and the biomechanics of the human body movements generate distributions of highly probable states that are internalized by the brain in the course of a lifetime. In Bayesian terms, the brain exploits prior knowledge, especially under conditions when sensory input is unavailable or uncertain, to predictively anticipate the most likely outcome of upcoming stimuli and movements. These internal models, formed during development, yet still malleable in adults, continuously adapt through the learning of novel stimuli and movements.Traditionally, neural beta (ß) oscillations are considered essential for maintaining sensorimotor and cognitive representations, and for temporal coding of expectations. However, recent findings show that fluctuations of ß band power in the resting state strongly correlate between cortical association regions. Moreover, central (hub) regions form strong interactions over time with different brain regions/networks (dynamic core). ß band centrality fluctuations of regions of the dynamic core predict global efficiency peaks suggesting a mechanism for network integration. Furthermore, this temporal architecture is surprisingly stable, both in topology and dynamics, during the observation of ecological natural visual scenes, whereas synthetic temporally scrambled stimuli modify it. We propose that spontaneous ß rhythms may function as a long-term "prior" of frequent environmental stimuli and behaviors.


Assuntos
Ritmo beta/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Previsões , Humanos
15.
Sci Rep ; 11(1): 14938, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294822

RESUMO

The use of surface electromyography (sEMG) is rapidly spreading, from robotic prostheses and muscle computer interfaces to rehabilitation devices controlled by residual muscular activities. In this context, sEMG-based gesture recognition plays an enabling role in controlling prosthetics and devices in real-life settings. Our work aimed at developing a low-cost, print-and-play platform to acquire and analyse sEMG signals that can be arranged in a fully customized way, depending on the application and the users' needs. We produced 8-channel sEMG matrices to measure the muscular activity of the forearm using innovative nanoparticle-based inks to print the sensors embedded into each matrix using a commercial inkjet printer. Then, we acquired the multi-channel sEMG data from 12 participants while repeatedly performing twelve standard finger movements (six extensions and six flexions). Our results showed that inkjet printing-based sEMG signals ensured significant similarity values across repetitions in every participant, a large enough difference between movements (dissimilarity index above 0.2), and an overall classification accuracy of 93-95% for flexion and extension, respectively.

16.
Sci Rep ; 11(1): 18692, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548511

RESUMO

Self-reports are conventionally used to measure political preferences, yet individuals may be unable or unwilling to report their political attitudes. Here, in 69 participants we compared implicit and explicit methods of political attitude assessment and focused our investigation on populist attitudes. Ahead of the 2019 European Parliament election, we recorded electroencephalography (EEG) from future voters while they completed a survey that measured levels of agreement on different political issues. An Implicit Association Test (IAT) was administered at the end of the recording session. Neural signals differed as a function of future vote for a populist or mainstream party and of whether survey items expressed populist or non-populist views. The combination of EEG responses and self-reported preferences predicted electoral choice better than traditional socio-demographic and ideological variables, while IAT scores were not a significant predictor. These findings suggest that measurements of brain activity can refine the assessment of socio-political attitudes, even when those attitudes are not based on traditional ideological divides.


Assuntos
Atitude , Comportamento , Eletroencefalografia , Política , Adulto , Europa (Continente) , Feminino , Humanos , Masculino , Inquéritos e Questionários , Adulto Jovem
17.
Neurosci Lett ; 762: 136140, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34324958

RESUMO

Different physiological signals could be coupled under specific conditions, in some cases related to pathologies or reductions in system complexity. Cardiac-locomotor synchronization (CLS) has been one of the most investigating coupling. The influence of a cognitive task on walking was investigated in dual-task experiments, but how different cognitive tasks may influence CLS has poorly been investigated. Twenty healthy subjects performed a dual-task walking (coupled with verbal fluency vs calculation) on a treadmill at three different speeds (comfortable speed CS; fast-speed: CS + 2 km/h; slow-speed: CS-2 km/h) while cardiac and walking rhythms were recorded using surface electrodes and a triaxial accelerometer, respectively. According to previous studies, we found a cognitive-motor interference for which cognitive performance was affected by motor exercise, but not vice-versa. We found a CLS at the baseline condition, at fast speed in both cognitive tasks, while at comfortable speed only for the verbal fluency task. In conclusion, the cardiac and locomotor rhythms were not coupled at slow speed and at comfortable speed during subtraction task. Cognitive performances generally increased at faster speed, when cardiac locomotor coupling was stronger.


Assuntos
Cognição/fisiologia , Coração/fisiologia , Caminhada/fisiologia , Adulto , Eletrofisiologia/métodos , Feminino , Humanos , Masculino
18.
Sci Rep ; 11(1): 4831, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649348

RESUMO

Real-world experience is typically multimodal. Evidence indicates that the facilitation in the detection of multisensory stimuli is modulated by the perceptual load, the amount of information involved in the processing of the stimuli. Here, we used a realistic virtual reality environment while concomitantly acquiring Electroencephalography (EEG) and Galvanic Skin Response (GSR) to investigate how multisensory signals impact target detection in two conditions, high and low perceptual load. Different multimodal stimuli (auditory and vibrotactile) were presented, alone or in combination with the visual target. Results showed that only in the high load condition, multisensory stimuli significantly improve performance, compared to visual stimulation alone. Multisensory stimulation also decreases the EEG-based workload. Instead, the perceived workload, according to the "NASA Task Load Index" questionnaire, was reduced only by the trimodal condition (i.e., visual, auditory, tactile). This trimodal stimulation was more effective in enhancing the sense of presence, that is the feeling of being in the virtual environment, compared to the bimodal or unimodal stimulation. Also, we show that in the high load task, the GSR components are higher compared to the low load condition. Finally, the multimodal stimulation (Visual-Audio-Tactile-VAT and Visual-Audio-VA) induced a significant decrease in latency, and a significant increase in the amplitude of the P300 potentials with respect to the unimodal (visual) and visual and tactile bimodal stimulation, suggesting a faster and more effective processing and detection of stimuli if auditory stimulation is included. Overall, these findings provide insights into the relationship between multisensory integration and human behavior and cognition.

19.
Front Public Health ; 9: 636089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842419

RESUMO

The clinical effects of the Covid-19 pandemic are now the subject of numerous studies worldwide. But what are the effects of the quarantine imposed by the states that implemented the measures of lockdown? The present research aims to explore, in a preliminary way, the major stress-related symptoms during the lockdown, due to Covid-19, in the Italian population. Subjects were asked to fill out a survey, that traced a line identifying the most relevant psychophysiological symptoms that took into account factors such as perceived stress, body perception, perceived pain, quality of sleep, perceptive variations (i.e., olfactory, gustatory, visual, acoustic, and haptic perception). A network approach formulating a hypothesis-generating exploratory analysis was adopted. Main results of the network analysis showed that the beliefs of having had the Covid-19 was related to individual variables (i.e., gender, working in presence, sleep quality, anxiety symptoms), while the familiarity of Covid-19 disease was related to contextual factors (e.g., number of recorded cases in the Region, working in presence). The self-perception of olfactory and perceptive alterations highlighted a great sensorial cross-modality, additionally, the olfactory impairment was related to the belief of having had the Covid-19. Compared to general network data, BAI, perceived stress, anxiety and chronic pain were in relation to daily sleep disturbance. Main study's results show how the management of the Covid-19 stressful representation, in its cognitive aspects, can modulate the psychophysiological responses.


Assuntos
COVID-19/psicologia , Controle de Doenças Transmissíveis , Estresse Psicológico/epidemiologia , Ansiedade , COVID-19/prevenção & controle , Dor Crônica , Neurociência Cognitiva , Humanos , Itália/epidemiologia , Pandemias , Psicofisiologia , Sono
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa