Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 3700-3709, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38216144

RESUMO

Acenes represent a unique class of polycyclic aromatic hydrocarbons that have fascinated chemists and physicists due to their exceptional potential for use in organic electronics. While recent advances in on-surface synthesis have resulted in higher acenes up to dodecacene, a comprehensive understanding of their fundamental properties necessitates their expansion toward even longer homologues. Here, we demonstrate the on-surface synthesis of tridecacene via atom-manipulation-induced conformational preparation and dissociation of a trietheno-bridged precursor on a Au(111) surface. The generated tridecacene has been investigated by scanning tunneling microscopy and spectroscopy (STM/STS), combined with first-principles calculations. We observe that the STS transport gap (1.09 eV) shrinks again following the gap reopening of dodecacene (1.4 eV). Spin-polarized density functional theory calculations confirm an antiferromagnetic open-shell ground-state electronic configuration for tridecacene in the gas phase. Interestingly, tridecacene's open-shell character is significantly reduced upon interaction with the Au(111) surface despite being only physisorbed. The interaction with the surface leads to a lowering of the magnetization of tridecacene, a reduced gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), compared to the gas phase, and a reduced relative energy to the nonmagnetic state, making it nearly isoenergetic. These observations show qualitatively that the influence of the Au(111) substrate on the properties of long acenes is significant, which is important for interpreting the measured STS transport gaps. Our work contributes to a fundamental understanding of the electronic properties of long acenes, confirming a nonmonotonous length-dependent HOMO-LUMO gap, and to the development of multistep tip-assisted synthesis of elusive compounds.

2.
J Phys Chem A ; 128(4): 747-760, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232326

RESUMO

Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking. Here, we report a study of the optical absorption properties in solid solutions of pentacene and tetracene, two prototypical organic semiconductors. In the mixtures, the optical properties can be continuously modified by statistical mixing at the molecular level. Comparison with time-dependent density functional theory calculations on occupationally disordered clusters unravels the electronic origin of the low energy optical transitions. The disorder partially relaxes the selection rules, leading to additional optical transitions that manifest as optical broadening. Furthermore, the contribution of diabatic charge-transfer states is modified in the mixtures, reducing the observed splitting in the 0-0 vibronic transition. Additional comparisons with other blended systems generalize our results and indicate that changes in the polarizability of the molecular environment in organic thin-film blends induce shifts in the absorption spectrum.

3.
Angew Chem Int Ed Engl ; : e202405818, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38665012

RESUMO

Molecular solar thermal systems (MOST) represent an auspicious solution for the storage of solar energy. We report silver salts as a unique class of catalysts, capable of releasing the stored energy from the promising 1,2-dihydro-1,2-azaborinine based MOST system. Mechanistic investigations provided insights into the silver catalyzed thermal backreaction, concurrently unveiling the first crystal structure of a 2-aza-3-borabicyclo[2.2.0]hex-5-ene, the Dewar isomer of 1,2-dihydro-1,2-azaborinine. Quantification of activation energies by kinetic experiments has elucidated the advantageous energy outcomes associated with Lewis acid catalysts, a phenomenon corroborated through computational analysis. By means of low temperature NMR spectroscopy, mechanistic insights into the coordination of Ag+ to the 1,2-dihydro-1,2-azaborinine were gained.

4.
Chemistry ; 29(72): e202302444, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37932038

RESUMO

1,2-Azaborinines are the BN analogues of arynes through exchange of the formal CC triple bond by an isoelectronic BN bond. The BN-arynes are an underexplored class of reactive intermediates. Dibenzo[c,e][1,2]azaborinine (10,9-BN-phenanthryne) 1 was inferred as reactive intermediate by trapping reactions. Here it is shown that 1 can be generated in the gas phase by thermolysis from the pyridine adduct of 9-azido-9-borafluorene by cleavage of the dative bond with pyridine and dinitrogen extrusion. The ionization potential of 1 is 8.2 eV with ionization resulting from the π HOMO. Under cryogenic matrix isolation conditions, 9-azido-9-borafluorene photolysis results in isomerization to the dinitrogen adduct of 1 without involvement of a triplet borylnitrene intermediate. Photochemical nitrogen extrusion from 1 ⋅ N2 is not possible and nitrogen fixation is irreversible under cryogenic conditions. In contrast, 2,4,7,9-tetra-tert-butyldibenzo[c,e][1,2]azaborinine can be photogenerated from the corresponding azidoborole precursor under cryogenic matrix isolation conditions, and nitrogen fixation is precluded due to steric hindrance. The BN stretching vibration at about 1750 cm-1 is much weaker than in typical linear diaryl iminoboranes.

5.
J Org Chem ; 88(13): 8369-8378, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37265177

RESUMO

Ortho-benzyne and 1,2-azaborinine are related by the formal exchange of the CC triple bond by the isoelectronic BN unit. The (2 + 2) and (2 + 4) cycloaddition reactions of 1,2-azaborinine with the different organic π systems (ethene, ethyne, 1,3-butadiene, 1,3-cyclopentadiene, furan, benzene) were examined computationally using density functional, second-order perturbation, and coupled-cluster methods. All reactions of 1,2-azaborinine with the studied substrates are highly exothermic and involve the formation of Lewis acid-base complexes of 1,2-azaborinine and respective π systems. The interaction between the π bond of the substrates and the empty p orbital of the boron atom in these complexes is remarkably strong, resulting in two-step mechanisms for the (2 + 2) and (2 + 4) cycloaddition reactions. Cycloaddition reactions have lower barriers than CH insertion reactions, and (2 + 4) reactions are favored over (2 + 2) cycloadditions.


Assuntos
Acetileno , Derivados de Benzeno , Derivados de Benzeno/química , Acetileno/química , Boro
6.
J Org Chem ; 88(3): 1364-1377, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36637334

RESUMO

6,13-Bis(tri(isopropyl)silylethynyl)pentacene, a particularly stable acene derivative important for (opto)electronic materials, turns reactive upon electrochemical one-electron oxidation. One of the typically stabilizing tri(isopropyl)silylethynyl substituents becomes involved in a (4 + 2) cycloaddition after redox umpolung. The electrosynthetic dimerization of the title compound provides easy access under mild conditions to a complex scaffold, which includes an intact pentacene, an anthracene, and a phenylene unit, all electronically separated. The product's electrochemical redox properties are explained by superimposed cyclic voltammetric features of the pentacene and the anthracene moieties. The reaction path is analyzed on the basis of electroanalytical and ESR data, and an oxidation-cycloaddition-reduction sequence is elaborated. The contribution of homogeneous electron transfers (electron transfer chain reaction) is negligible, in accordance with the relative formal redox potentials of the starting compound and the product. Quantum chemical calculations indicate that the central cycloaddition should be described as a two-step process with a distonic radical cation intermediate. We suggest an extended notation to define the contribution of the components with respect to electron count in the two-step cycloaddition, [3 + 1, 1 + 1].

7.
Angew Chem Int Ed Engl ; 62(18): e202301593, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36807732

RESUMO

The 2π electron 1,3-dipole boradigermaallyl, valence-isoelectronic to an allyl cation, is synthesized from a bis(germylene). It reacts with benzene at room temperature by insertion of a boron atom into the benzene ring. Computational investigation of the mechanism shows the boradigermaallyl reacting with a benzene molecule in a concerted (4+3) or [π4s+π2s] cycloaddition reaction. Thus, the boradigermaallyl acts as a highly reactive dienophile in this cycloaddition reaction with nonactivated benzene as diene unit. This type of reactivity provides a novel platform for ligand assisted borylene insertion chemistry.

8.
Chemistry ; 28(5): e202103614, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34854508

RESUMO

The boron-nitrogen analogue of ortho-benzyne, 1,2-azaborinine, is a reactive intermediate that features a formal boron-nitrogen triple bond. We here show by combining experimental and computational techniques that the Lewis acidity of the boron center of dibenzo[c,e][1,2]azaborinine allows interaction with the silicon containing single bonds Si-E through the silicon bonding partner E (E=F, Cl, OR, H). The binding to boron activates the Si-E bonds for subsequent insertion reaction. This shows that the BN-aryne is a ferocious species that even can activate and insert into the very strong Si-F bond.

9.
Chemistry ; 28(11): e202104161, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34918840

RESUMO

Novel BN-doped compounds based on chiral, tetrasubstituted [2.2]paracyclophane and NBN-benzo[f,g]tetracene were synthesized by Sonogashira-Hagihara coupling. Conjugated ethynyl linkers allow electronic communication between the π-electron systems through-bond, whereas through-space interactions are provided by strong π-π overlap between the pairs of NBN-building blocks. Excellent optical and chiroptical properties in racemic and enantiopure conditions were measured, with molar absorption coefficients up to ϵ=2.04×105  M-1 cm-1 , fluorescence quantum yields up to ΦPL =0.70, and intense, mirror-image electronic circular dichroism and circularly polarized luminescence signals of the magnitude of 10-3 for the absorption and luminescence dissymmetry factors. Computed glum,calcd. values match the experimental ones. Electroanalytical data show both oxidation and reduction of the ethynyl-linked tetra-NBN-substituted paracyclophane, with an overlap of two redox processes for oxidation leading to a diradical dication.

10.
J Phys Chem A ; 126(42): 7660-7666, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36254874

RESUMO

The boryl nitrene CatBN (Cat = catecholato) turns highly reactive toward small inert molecules upon irradiation of its triplet ground state X̃3A2 with light of wavelength λ > 550 nm. A computational study of a model boryl nitrene using complete active space self-consistent field (CASSCF) theory provides evidence for the population of the highly reactive electronic state ã1A1 upon irradiation. Potential energy scans connecting different critical points (minima, minimum energy crossing points, and conical intersections) reveal two possible pathways that could relax photoexcited boryl nitrene from the Franck-Condon region of Ã3B1 to the ã1A1 state minimum. Considering the energy barriers to relaxation from one electronic state to another and the magnitude of spin-orbit couplings, the energetically most favorable pathway involves photoexcitation to Ã3B2, followed by intersystem crossing to the open-shell singlet state (b̃1A2) and internal conversion to ã1A1. The relevant minimum energy crossing point is about 7-8 kcal mol-1 higher in energy than the Franck-Condon region.

11.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235296

RESUMO

The adsorption of helium on charged hexabenzocoronene (Hbc, C42H18), a planar polycyclic aromatic hydrocarbon (PAH) molecule of D6h symmetry, was investigated by a combination of high-resolution mass spectrometry and classical and quantum computational methods. The ion abundance of HenHbc+ complexes versus size n features prominent local anomalies at n = 14, 38, 68, 82, and a weak one at 26, indicating that for these "magic" sizes, the helium evaporation energies are relatively large. Surprisingly, the mass spectra of anionic HenHbc- complexes feature a different set of anomalies, namely at n = 14, 26, 60, and 62, suggesting that the preferred arrangement of the adsorbate atoms depends on the charge of the substrate. The results of our quantum calculations show that the adsorbate layer grows by successive filling of concentric rings that surround the central benzene ring, which is occupied by one helium atom each on either side of the substrate. The helium atoms are fairly localized in filled rings and they approximately preserve the D6h symmetry of the substrate, but helium atoms in partially filled rings are rather delocalized. The first three rings contain six atoms each; they account for magic numbers at n = 14, 26, and 38. The size of the first ring shrinks as atoms are filled into the second ring, and the position of atoms in the second ring changes from hollow sites to bridge sites as atoms are filled into the third ring. Beyond n = 38, however, the arrangement of helium atoms in the first three rings remains essentially frozen. Presumably, another ring is filled at n = 68 for cations and n = 62 for anions. The calculated structures and energies do not account for the difference between charge states, although they agree with the measurements for the cations and show that the first solvation shell of Hbc± is complete at n = 68. Beyond that size, the adsorbate layer becomes three-dimensional, and the circular arrangement of helium changes to hexagonal.

12.
Chemistry ; 27(10): 3193-3212, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368683

RESUMO

Acenes, consisting of linearly fused benzene rings, are an important fundamental class of organic compounds with various applications. Hexacene is the largest acene that was synthesized and isolated in the 20th century. The next largest member of the acene family, heptacene, was observed in 2007 and since then significant progress in preparing acenes has been reported. Significantly larger acenes, up to undecacene, could be studied by means of low-temperature matrix isolation spectroscopy with in situ photolytic generation, and up to dodecacene by means of on-surface synthesis employing innovative precursors and highly defined crystalline metal surfaces under ultrahigh vacuum conditions. The review summarizes recent experimental and theoretical advances in the area of acenes that give a significantly deeper insight into the fundamental properties and nature of the electronic structure of this fascinating class of organic compounds.

13.
Chemistry ; 27(14): 4605-4616, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33372718

RESUMO

The carriers of the diffuse interstellar bands (DIBs) are still largely unknown although polycyclic aromatic hydrocarbons, carbon chains, and fullerenes are likely candidates. A recent analysis of the properties of n-acenes of general formula C4n+2 H2n+4 suggested that these could be potential carriers of some DIBs. Dehydrogenation reactions of n-acenes after absorption of an interstellar UV photon may result in dehydroacenes. Here the reaction energies and barriers for formation of n-cyclacenes from 2,3-didehydroacenes (n-DDA) by intramolecular Diels-Alder reaction to dihydro-etheno-cyclacenes (n-DEC) followed by ejection of ethyne by retro-Diels-Alder reactions are analyzed using thermally assisted occupation density functional theory (TAO-DFT) for n=10-20. It is found that the barriers for each of the steps depend on the ring strain of the underlying n-cyclacene, and that the ring strain of n-DEC is about 75 % of that of the corresponding n-cyclacene. In each case, ethyne extrusion is the step with the highest energy barrier, but these barriers are smaller than CH bond dissociation energies, suggesting that formation of cyclacenes is an energetically conceivable fate of n-acenes after multiple absorption of UV photons.

14.
Chemistry ; 27(6): 1981-1983, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33073886

RESUMO

Halide and phenyl substituted germaborenes were shown to react with azides at room temperature and transfer a borylene moiety to give iminoboranes. This iminoborane synthesis based on a borylene transfer route was investigated computationally in the case of the phenyl substituted germaborene.

15.
Phys Chem Chem Phys ; 23(9): 5315-5324, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33634299

RESUMO

Hydrogen adsorption on different benzenes, both organic and inorganic, decorated with Li cations (Li+) was systematically studied by using quantum chemistry techniques. Our calculations demonstrate that Li+-decoration enhances the hydrogen storage ability of the complexes. MP2 calculations reveal that one to five hydrogen molecules per Li+ have high adsorption energies (Ead), up to -4.77 kcal mol-1, which is crucial for effective adsorption/desorption performance. The assessed hydrogen capacity of studied complexes is in the range of 10.0-10.6 wt%. SAPT2 calculations confirmed that induction and electrostatic interactions play the major role for H2 adsorption of the investigated systems, whereas London dispersion contributes to Ead moderately only in the cases of large number of hydrogen molecules adsorbed. Independent gradient model (IGM) analysis showed that there exists non-covalent bonding between Li+ and H2. The obtained van't Hoff desorption temperatures substantially exceed the temperature of liquid nitrogen. Ab initio molecular dynamics simulations confirmed the stability of the studied complexes. Our investigations establish the high potential of the studied complexes for usage in systems for hydrogen storage.

16.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065279

RESUMO

The Diels-Alder cycloaddition between bisdienes and bisdienophile incorporating the 7-oxa-bicyclo[2.2.1]heptane unit are well known to show high diastereoselectivity that can be exploited for the synthesis of molecular belts. The related bisdiene 5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octene is a valuable building block for the synthesis of photoprecursors for acenes, but it has not been employed for the synthesis of molecular belts. The present work investigates by computational means the Diels-Alder reaction between these bisdiene building blocks with syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene, which shows that the diastereoselectivity of the Diels-Alder reaction of the etheno-bridged bisdiene is lower than that of the epoxy-bridged bisdiene. The reaction of the etheno-bridged bisdiene and syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene in 2:1 ratio yields two diastereomers that differ in the orientation of the oxa and etheno bridges based on NMR and X-ray crystallography. The all-syn diastereomer can be transformed into a molecular belt by inter- and intramolecular Diels-Alder reactions with a bifunctional building block. The molecular belt could function as a synthetic intermediate en route to a [11]cyclacene photoprecursor.

17.
Angew Chem Int Ed Engl ; 60(43): 23112-23116, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34414646

RESUMO

The reaction of a borylnitrene with carbon dioxide is studied under cryogenic matrix isolation conditions. Photogenerated CatBN (Cat=catecholato) reacts with CO2 under formation of the cycloaddition product CatBNCO2 , a 3-oxaziridinone derivative, after photoexcitation (>550 nm). The product shows Fermi resonances between the CO stretching and ring deformation modes that cause unusual 13 C and 18 O isotopic shifts. A computational analysis of the 3-oxaziridinone shows this cyclic carbamate to be less strained than an α-lactone or an α-lactame.

18.
Angew Chem Int Ed Engl ; 60(29): 15798-15802, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33798286

RESUMO

Cycloaddition-dehydration involving a BNBN-butadiene analogue at the bay region of a dibenzoperylene and a non-enolizable aldehyde provides a novel strategy for incorporation of the oxadiazadiborinane (B2 N2 CO) ring into the scaffold of a polycyclic aromatic hydrocarbon resulting in highly emissive compounds.

19.
Chemistry ; 26(55): 12654-12663, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902001

RESUMO

The reaction of dioxygen with nitrenes can have significant energy barriers, although both reactants are triplet diradicals and the formation of nitroso-O-oxides is spin-allowed. By means of matrix-isolation infrared spectroscopy in solid argon, nitrogen, and neon, and through high-level computational quantum chemistry, it is shown herein that a 3-nitreno-1,3,2-benzodioxaborole CatBN (Cat=catecholato) reacts with dioxygen under cryogenic conditions thermally at temperatures as low as 7 K to produce two distinct products, an anti-nitroso-O-oxide and a nitritoborane CatBONO. The computed barriers for the formation of nitroso-O-oxide isomers are very low. Whereas anti-nitroso-O-oxide is kinetically trapped, its bisected isomer has a very low barrier for metathesis, yielding the CatBO+NO radicals in a strongly exothermic reaction; these radicals can combine under matrix-isolation conditions to give nitritoborane CatBONO. The trapped isomer, anti-nitroso-O-oxide, can form the nitritoborane CatBONO only after photoexcitation, possibly involving isomerization to the bisected isomer of anti-nitroso-O-oxide.

20.
Chemistry ; 26(15): 3420-3434, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31985891

RESUMO

The properties as well as solid-state structures, singlet fission, and organic field-effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13-etheno-bridged precursors by reaction with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π-π stacking. Although the energy of the first electric dipole-allowed optical transition varies only within 370 cm-1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm-1 (0.20 eV) for radical cations and 1300 cm-1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet-fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin-film transistor (TFT) characteristics with electron mobilities of 2×10-3 and 6×10-2  cm2 V-1 s-1 , respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa