Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(47): 13882-13889, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34784714

RESUMO

A Langmuir film of cubane-bridged bisporphyrin (H2por-cubane-H2por) at the air/water interface was developed and characterized. The floating film was successfully employed for the chiral discrimination between l- and d-histidine. The enantioselective behavior persisted after the deposition of the film on a solid support using the Langmuir-Schaefer method. Distinct absorption and reflection spectra were observed in the presence of l- or d-histidine, revealing that conformational switching was governed by the interaction between H2por-cubane-H2por and the histidine enantiomer. The mechanism of chiral selection was investigated using an ad hoc modified nulling ellipsometer, indicating the anti-conformation was dominant in the presence of l-histidine, whereas the presence of d-histidine promoted the formation of tweezer conformation.


Assuntos
Porfirinas , Histidina , Conformação Molecular , Estereoisomerismo
2.
Molecules ; 25(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824375

RESUMO

This review focuses on the description of several examples of supramolecular assemblies of phthalocyanine derivatives differently functionalized and interfaced with diverse kinds of chemical species for photo-induced phenomena applications. In fact, the role of different substituents was investigated in order to tune peculiar aggregates formation as well as, with the same aim, the possibility to interface these derivatives with other molecular species, as electron donor and acceptor, carbon allotropes, cyclodextrins, protein cages, drugs. Phthalocyanine photo-physical features are indeed really interesting and appealing but need to be preserved and optimized. Here, we highlight that the supramolecular approach is a versatile method to build up very complex and functional architectures. Further, the possibility to minimize the organization energy and to facilitate the spontaneous assembly of the molecules, in numerous examples, has been demonstrated to be more useful and performing than the covalent approach.


Assuntos
Indóis/química , Luz , Fotoquímica , Polímeros/química , Transporte de Elétrons , Isoindóis , Termodinâmica
3.
Chemistry ; 25(62): 14123-14132, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31441551

RESUMO

Many strategies have been adopted to improve the photoinduced features of zinc oxide nanostructures for different application fields. In this work, zinc oxide has been synthesised and decorated by plasmonic metal nanoparticles to enhance its photocatalytic activity in the visible range. Furthermore, an insulating layer of SiO2 has been grown between the surface of zinc oxide nanoflakes and silver nanoparticles. A synthetic procedure that allows the accurate modulation of the insulating layer thickness in the range 5-40 nm has been developed. Evidences highlight the crucial role of the SiO2 layer in dramatically increasing photocatalytic water oxidation promoted by the nanostructure under both UV and visible illumination. An ideal thickness value of about 10 nm has been demonstrated to guarantee the plasmon-induced resonance energy-transfer process and to quench the Förster resonance energy-transfer mechanism; thus, optimising the local surface plasmon resonance effect and water oxidation properties.

4.
Chemphyschem ; 20(3): 422-428, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548371

RESUMO

Thin films of metal phthalocyanines (MPc) are known to exhibit excellent physical properties but poorly controlled morphologies. Therefore, the present work seeks to understand the film growth mechanism of a model compound for potentially usable MPc, specifically, copper tetra(3-nitro-5-tert-butyl)phthalocyanine (CuPc*). The Langmuir-Schaefer (LS) technique was applied to prepare a series of CuPc* films under different processing conditions. The film growth was examined by Brewster angle microscopy (BAM) on the water surface and small-angle X-ray scattering (SAXS) from the solid films. Neutron reflectometry (NR) measurements of the water uptake into the films and computer simulation of hydrated CuPc* were performed to substantiate an idea of colloidal MPc-water aggregates as nanoscale precursors of smooth solid films. This idea appears fruitful in terms of materials chemistry.

5.
Anal Chem ; 90(11): 6952-6958, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29727561

RESUMO

Conformational switching induced in ethane-bridged bisporphyrins was used as a sensitive transduction method for revealing the presence of urea dissolved in water via nonenzymatic approach. Bisporphyrins were deposited on solid quartz slides by means of the spin-coating method. Molecular conformations of Zn and Ni monometalated bis-porphyrins were influenced by water solvated urea molecules and their fluorescence emission was modulated by the urea concentration. Absorption, fluorescence and Raman spectroscopies allowed the identification of supramolecular processes, which are responsible for host-guest interaction between the active layers and urea molecules. A high selectivity of the sensing mechanism was highlighted upon testing the spectroscopic responses of bis-porphyrin films to citrulline and glutamine used as interfering agents. Additionally, potential applicability was demonstrated by quantifying the urea concentration in real physiological samples proposing this new approach as a valuable alternative analytical procedure to the traditionally used enzymatic methods.


Assuntos
Etano/química , Compostos Organometálicos/química , Porfirinas/química , Ureia/análise , Conformação Molecular , Compostos Organometálicos/síntese química
6.
Nanomedicine ; 14(7): 1963-1971, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902526

RESUMO

Protein biomarkers are important diagnostic tools for cancer and several other diseases. To be validated in a clinical context, a biomarker should satisfy some requirements including the ability to provide reliable information on a pathological state by measuring its expression levels. In parallel, the development of an approach capable of detecting biomarkers with high sensitivity and specificity would be ideally suited for clinical applications. Here, we performed an immune-based label free assay using Surface Plasmon Resonance (SPR)-based detection of the soluble form of E-cadherin, a cell-cell contact protein that is involved in the maintaining of tissue integrity. With this approach, we obtained a specific and quantitative detection of E-cadherin from a few hundred microliters of serum of breast cancer patients by obtaining a 10-fold enhancement in the detection limit over a traditional colorimetric ELISA.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Técnicas Biossensoriais , Neoplasias da Mama/diagnóstico , Caderinas/metabolismo , Imunoensaio , Ressonância de Plasmônio de Superfície , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Limite de Detecção , Células Tumorais Cultivadas
7.
Chemistry ; 23(6): 1338-1345, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27880013

RESUMO

The design of a collagen scaffold containing iron oxide nanostructures capped by a TiO2 (anatase) layer is reported. The TiO2 shell is proposed to perform a dual role: 1) as an innovative and biocompatible cross-linker agent, providing binding sites to the protein moiety, through the well-known TiO2 chemical affinity towards carboxyl groups, and 2) as a protective surface layer for the paramagnetic core against oxidation. Simultaneously, the presence of the nanostructures confers to the collagen gel sensitivity to an external stimulus; that is, the application of a magnetic field. The hybrid biomaterial was demonstrated to be nontoxic and is proposed as a smart scaffold for the release of bioactive compounds on demand. The tuneable release of a model protein (myoglobin) upon application of a magnetic field was investigated. Myoglobin was loaded in the microporous material and discharge was induced by consecutive magnet applications, leading to release of the protein with high spatio-temporal and dosage control.


Assuntos
Colágeno/química , Mioglobina/química , Nanoestruturas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Óxido Ferroso-Férrico/química , Campos Magnéticos , Camundongos , Microscopia Eletrônica de Transmissão , Mioglobina/metabolismo , Células NIH 3T3 , Nanoestruturas/toxicidade , Porosidade , Análise Espectral Raman , Termogravimetria , Titânio/química
8.
Langmuir ; 33(18): 4490-4499, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28420236

RESUMO

Silica nanoparticles (SiNPs) are widely studied nanomaterials for their potential employment in advanced biomedical applications, such as selective molecular imaging and targeted drug delivery. SiNPs are generally low cost and highly biocompatible, can be easily functionalized with a wide variety of functional ligands, and have been demonstrated to be effective in enhancing ultrasound contrast at clinical diagnostic frequencies. Therefore, SiNPs might be used as contrast agents in echographic imaging. In this work, we have developed a SiNPs-based system for the in vitro molecular imaging of hepatocellular carcinoma cells that express high levels of glypican-3 protein (GPC-3) on their surface. In this regard, a novel GPC-3 targeting peptide was designed and conjugated to fluorescent silica nanoparticles. The physicochemical properties, acoustic behavior, and biocompatibility profile of the functionalized SiNPs were characterized; then binding and uptake of both naked and functionalized SiNPs were analyzed by laser scanning confocal microscopy and transmission electron microscopy in GPC-3 positive HepG2 cells, a human hepatocarcinoma cell line. The results obtained showed that GPC-3-functionalized fluorescent SiNPs significantly enhanced the ultrasound contrast and were effectively bound and taken up by HepG2 cells without affecting their viability.


Assuntos
Nanopartículas , Glipicanas , Humanos , Neoplasias Hepáticas , Imagem Molecular , Peptídeos , Dióxido de Silício
9.
Biomacromolecules ; 16(9): 2599-608, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26270197

RESUMO

A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.


Assuntos
Colágeno , Compostos Férricos , Hidrogéis , Teste de Materiais , Nanopartículas/química , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Colágeno/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Fluoresceína/química , Fluoresceína/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos
10.
J Nanosci Nanotechnol ; 14(9): 6732-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924324

RESUMO

The synthetic conjugated poly(1,4-arylene-2,5-thienylene) containing benzo[c][2,1,3]thiadiazole monomeric units (Bz-PAT) is proposed as active layer for the selective detection of mercuric ions. The Bz-PAT polymer chemical structure induces the formation of a disordered film with numerous vacancies and the size of these defects could be exploited for a reversible trapping of mercuric ions. For these reasons the Langmuir-Schaefer (LS) deposition method has been employed for transferring Bz-PAT layers with the desired accurate bi-dimensional organization control of the layer and with a high control of the deposition parameters. In this contribution, the frequency variation of quartz crystal microbalances functionalized with 10, 20, 30 and 40 LS runs of Bz-PAT have been investigated in response to the injection of aqueous solutions of HgCl2, Pb(NO3)2, NiCl2, CdCl2 and ZnSO4 at different concentrations (0.5 mM, 1 mM, 5 mM). An almost linear dependence on the number of the LS layers and hence on the film thickness, measured by means of ellipsometric spectroscopy, has been found in terms of sensor response to concentration of Hg2+ ions fluxed. By means of UV-Vis spectroscopy, the variations in the π-π* absorption band of the polymer, attributed to the thiophene segment, induced by HgCl2 injection has been analyzed and explained as a consequence of the electron transfer from the mercuric ion to the polymer solid film. These results, together with the linear relation found between the number of deposited layers and LS film thickness, suggest that the sensing mechanism can be explained both by an electron interaction between active layer and analyte and a diffusion mechanism of Hg2+ into the solid film that reaches an asymptotic value at 30 runs (about 80 nm), then a higher number of layers does not influence the sensor sensibility.


Assuntos
Íons/química , Mercúrio/química , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Análise Espectral/métodos , Íons/análise , Mercúrio/análise
11.
Biochem Soc Trans ; 41(5): 1242-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24059514

RESUMO

Assignments of IR bands of reduced minus oxidized IR difference spectra of bovine and related cytochrome c oxidases are reviewed and their linkages to specific metal centres are assessed. To aid this, redox-poised difference spectra in the presence of cyanide or carbon monoxide are presented. These ligands fix the redox states of either haem a3 alone or haem a3 and CuB respectively, while allowing redox cycling of the remaining centres.


Assuntos
Monóxido de Carbono/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/análogos & derivados , Animais , Monóxido de Carbono/metabolismo , Bovinos , Cobre/química , Cianetos/química , Heme/química , Raios Infravermelhos , Ligantes , Oxirredução/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Nanomaterials (Basel) ; 13(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177071

RESUMO

Inorganic chiral nanoparticles are attracting more and more attention due to their peculiar optical properties and potential biological applications, such as bioimaging, therapeutics, and diagnostics. Among inorganic chiral nanoparticles, gold chiral nanostructures were demonstrated to be very interesting in this context, with good physical chemical stability and also the possibility to decorate the surface, improving biomedical application as the interaction with the bio-systems. Gold (Au) nanostructures were synthesized according to a seed-mediated procedure which envisages the use of cetyltrimethylammonium bromide (CTAB) as the capping agent and L- and D-cysteine to promote chirality. Au nanostructures have been demonstrated to have opposite circular dichroism signals depending on the amino acid enantiomer used during the synthesis. Then, a procedure to decorate the Au surface with penicillamine, a drug used for the treatment of Wilson's disease, was developed. The composite material of gold nanoparticles/penicillamine was characterized using electron microscopy, and the penicillamine functionalization was monitored by means of UV-Visible, Raman, and infrared spectroscopy, highlighting the formation of the Au-S bond. Furthermore, electron circular dichroism was used to monitor the chirality of the synthesized nanostructures and it was demonstrated that both penicillamine enantiomers can be successfully bonded with both the enantiomers of the gold nanostructures without affecting gold nanoparticles' chirality. The effective modification of nanostructures' surfaces via penicillamine introduction allowed us to address the important issue of controlling chirality and surface properties in the chiral nano-system.

13.
ACS Appl Mater Interfaces ; 15(25): 30674-30683, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326387

RESUMO

Enantiorecognition of a chiral analyte usually requires the ability to respond with high specificity to one of the two enantiomers of a chiral compound. However, in most cases, chiral sensors have chemical sensitivity toward both enantiomers, showing differences only in the intensity of responses. Furthermore, specific chiral receptors are obtained with high synthetic efforts and have limited structural versatility. These facts hinder the implementation of chiral sensors in many potential applications. Here, we utilize the presence of both enantiomers of each receptor to introduce a novel normalization that allows the enantio-recognition of compounds even when single sensors are not specific for one enantiomer of a target analyte. For this purpose, a novel protocol that permits the fabrication of a large set of enantiomeric receptor pairs with low synthetic efforts by combining metalloporphyrins with (R,R)- and (S,S)-cyclohexanohemicucurbit[8]uril is developed. The potentialities of this approach are investigated by an array of four pairs of enantiomeric sensors fabricated using quartz microbalances since gravimetric sensors are intrinsically non-selective toward the mechanism of interaction of analytes and receptors. Albeit the weak enantioselectivity of single sensors toward limonene and 1-phenylethylamine, the normalization allows the correct identification of these enantiomers in the vapor phase indifferent to their concentration. Remarkably, the achiral metalloporphyrin choice influences the enantioselective properties, opening the way to easily obtain a large library of chiral receptors that can be implemented in actual sensor arrays. These enantioselective electronic noses and tongues may have a potential striking impact in many medical, agrochemical, and environmental fields.

14.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014603

RESUMO

The Special Issue "Synthesis, Functionalization and Applications of Nanocarbons" starts from the growing interest of the scientific community in carbon-based materials and the various applications of these versatile compounds [...].

15.
Nanomaterials (Basel) ; 12(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35564258

RESUMO

Polymeric nanoparticles made of the copolymer Poly(L-lactide-co-caprolactone-co-glycolide) were prepared using the solvent evaporation method. Two different surfactants, polyvinyl alcohol and dextran, and a mixture of the two were employed. The three types of nanoparticles were used as hosting carriers of two chemotherapeutic drugs, the hydrophilic doxorubicin and the hydrophobic SN-38. The morphostructural characterization showed similar features for the three types of nanoparticles, while the drug encapsulation efficiency indicated that the dextran-based systems are the most effective with both drugs. Cellular studies with breast cancer cells were performed to compare the delivery capability and the cytotoxicity profile of the three nanosystems. The results show that the unloaded nanoparticles are highly biocompatible at the administered concentrations and confirmed that dextran-coated nanoparticles are the most efficient vectors to release the two drugs, exerting cytotoxic activity. PVA, on the other hand, shows limited drug release in vitro, probably due to strong interactions with both drugs. Data also show the release is more efficient for doxorubicin than for SN-38; indeed, the doxorubicin IC50 value for the dextran-coated nanoparticles was about 35% lower than the free drug. This indicates that these nanocarriers are suitable candidates to deliver hydrophilic drugs while needing further modification to host hydrophobic molecules.

16.
Nanomaterials (Basel) ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919207

RESUMO

Carbon nanomaterials are a group of materials characterized by sp2/sp3 carbon backbone which, combined with surface atoms and/or chemical groups, ensures peculiar physical chemical features for a wide range of applications. Among these materials, carbon dots and carbon nanoparticles belong to carbon nanomaterials with a few nanometer dimensions. In this work, carbon nanoparticles were produced from spent coffee grounds as sustainable carbon source through a simple, cheap and eco-friendly procedure according to an oxidation process (at controlled temperature) driven by hydrogen peroxide. Atomic Force Microscope (AFM) and fluorescence, UV-Vis absorption, FT-IR and Raman spectroscopy were used to assess the formation of carbon nanomaterials of about 10 nm with the typical emission and absorption properties of carbon dots and peculiar surface features. In fact, the presence of heteroatoms, i.e., phosphorus, and the carbonyl/carboxyl surface groups on carbon nanoparticles, was proposed to confer peculiar properties allowing the fast Mn(VII) reduction to Mn(II) at neutral pH and the Cr(VI) reduction to Cr(III) in weak acid aqueous media.

17.
Bioengineering (Basel) ; 7(4)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260520

RESUMO

The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.

18.
Materials (Basel) ; 13(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630074

RESUMO

It is well known that energetic demand and environmental pollution are strictly connected; the side products of vehicle and industrial exhausts are considered extremely dangerous for both human and environmental health. In the last years, the possibility to simultaneously photo-degrade water dissolved pollutants by means of ZnO nanostructures and to use their piezoelectric features to enhance the photo-degradation process has been investigated. In the present contribution, an easy and low-cost wet approach to synthetize hexagonal elongated ZnO microstructures in the wurtzite phase was developed. ZnO performances as photo-catalysts, under UV-light irradiation, were confirmed on water dissolved methylene blue dye. Piezoelectric responses of the synthetized ZnO microstructures were evaluated, as well, by depositing them into films onto flexible substrates, and a home-made layout was developed, in order to stimulate the ZnO microstructures deposited on solid supports by means of mechanical stress and UV photons, simultaneously. A relevant increment of the photo-degradation efficiency was observed when the piezopotential was applied, proposing the present approach as a completely eco-friendly tool, able to use renewable energy sources to degrade water solved pollutants.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32195240

RESUMO

The interaction between homochiral substituted perylene bisimide (PBI) molecule and the D enantiomer of phenylalanine amino acid was monitored. Spectroscopic transitions of PBI derivative in aqueous solution in the visible range were used to evaluate the presence of D-phenylalanine. UV-visible, fluorescence, FT-IR, and AFM characterizations showed that D-phenylalanine induces significant variations in the chiral perylene derivative aggregation state and the mechanism is enantioselective as a consequence of the 3D analyte structure. The interaction mechanism was further investigated in presence of interfering amino acid (D-serine and D-histidine) confirming that both chemical structure and its 3D structure play a crucial role for the amino acid discrimination. A D-phenylalanine fluorescence sensor based on perylene was proposed. A limit of detection (LOD) of 64.2 ± 0.38 nM was calculated in the range 10-7-10-5 M and of 1.53 ± 0.89 µM was obtained in the range 10-5 and 10-3 M.

20.
Nanomaterials (Basel) ; 10(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722422

RESUMO

In recent years, the presence of numerous xenobiotic substances, such as antibiotics, has been detected in water environments. They can be considered as environmental contaminants, even if their effect on human health has yet to be totally understood. Several approaches have been studied for the removal of these kinds of pollutants. Among these compounds, tetracycline (TC), a broad-spectrum antibiotic, is one of the most commonly found in water due to its widespread use. In the context of reducing the presence of TC in aqueous solution, in this contribution, a composite catalyst based on zinc oxide (ZnO) and iron oxide (γ-Fe2O3) was developed and its photocatalytic properties were investigated. The catalytic materials were synthesized by a microwave-assisted aqueous solution method and characterized by Field Emission Scanning Electron Microscope (FESEM), X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET) analysis. The TC concentration was evaluated by spectrophotometer measurements at specific time intervals. The performed photocatalytic experiments clearly demonstrated that the ZnO/γ-Fe2O3 composite catalyst presents significant photocatalytic activity, indeed a TC degradation efficiency of 88.52% was registered after 150 min. The presence of iron oxide in the structure of the catalyst enhances both the surface area and the pore volume, facilitating the adsorption of the analyte on the surface of nanostructures, a fundamental phase to optimize a photodegradation process. Moreover, ZnO was found to play the key role in the photocatalytic process assisted by γ-Fe2O3 which enhanced the TC degradation efficiency by 20%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa