Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 161(2): 361-73, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25799385

RESUMO

Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors.


Assuntos
Drosophila melanogaster/citologia , Hemócitos/citologia , Actinas/metabolismo , Animais , Adesão Celular , Inibição de Contato , Citoesqueleto/metabolismo , Miosinas/metabolismo
2.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38345101

RESUMO

Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.


Assuntos
Matriz Extracelular , Membrana Nuclear , Humanos , Antígeno Ki-67/metabolismo , Matriz Extracelular/metabolismo , Mioblastos/metabolismo , Proliferação de Células
3.
Biophys J ; 123(5): 527-537, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258291

RESUMO

The mechanical forces that cells experience from the tissue surrounding them are crucial for their behavior and development. Experimental studies of such mechanical forces require a method for measuring them. A widely used approach in this context is bead deformation analysis, where spherical particles are embedded into the tissue. The deformation of the particles then allows to reconstruct the mechanical stress acting on them. Existing approaches for this reconstruction are either very time-consuming or not sufficiently general. In this article, we present an analytical approach to this problem based on an expansion in solid spherical harmonics that allows us to find the complete stress tensor describing the stress acting on the tissue. Our approach is based on the linear theory of elasticity and uses an ansatz specifically designed for deformed spherical bodies. We clarify the conditions under which this ansatz can be used, making our results useful also for other contexts in which this ansatz is employed. Our method can be applied to arbitrary radial particle deformations and requires a very low computational effort. The usefulness of the method is demonstrated by an application to experimental data.


Assuntos
Elasticidade , Estresse Mecânico
4.
J Cell Sci ; 135(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35621127

RESUMO

Podosomes are mechanosensitive protrusive actin structures that are prominent in myeloid cells, and they have been linked to vascular extravasation. Recent studies have suggested that podosomes are hierarchically organized and have coordinated dynamics on the cell scale, which implies that the local force generation by single podosomes can be different from their global combined action. Complementary to previous studies focusing on individual podosomes, here we investigated the cell-wide force generation of podosome-bearing ER-Hoxb8 monocytes. We found that the occurrence of focal tractions accompanied by a cell-wide substrate indentation cannot be explained by summing the forces of single podosomes. Instead, our findings suggest that superimposed contraction on the cell scale gives rise to a buckling mechanism that can explain the measured cell-scale indentation. Specifically, the actomyosin network contraction causes peripheral in-plane substrate tractions, while the accumulated internal stress results in out-of-plane deformation in the central cell region via a buckling instability, producing the cell-scale indentation. Hence, we propose that contraction of the actomyosin network, which connects the podosomes, leads to a substrate indentation that acts in addition to the protrusion forces of individual podosomes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Podossomos , Actomiosina , Extensões da Superfície Celular , Humanos , Monócitos , Tração
5.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33574063

RESUMO

To study the mechanisms controlling front-rear polarity in migrating cells, we used zebrafish primordial germ cells (PGCs) as an in vivo model. We find that polarity of bleb-driven migrating cells can be initiated at the cell front, as manifested by actin accumulation at the future leading edge and myosin-dependent retrograde actin flow toward the other side of the cell. In such cases, the definition of the cell front, from which bleb-inhibiting proteins such as Ezrin are depleted, precedes the establishment of the cell rear, where those proteins accumulate. Conversely, following cell division, the accumulation of Ezrin at the cleavage plane is the first sign for cell polarity and this aspect of the cell becomes the cell back. Together, the antagonistic interactions between the cell front and back lead to a robust polarization of the cell. Furthermore, we show that chemokine signaling can bias the establishment of the front-rear axis of the cell, thereby guiding the migrating cells toward sites of higher levels of the attractant. We compare these results to a theoretical model according to which a critical value of actin treadmilling flow can initiate a positive feedback loop that leads to the generation of the front-rear axis and to stable cell polarization. Together, our in vivo findings and the mathematical model, provide an explanation for the observed nonoriented migration of primordial germ cells in the absence of the guidance cue, as well as for the directed migration toward the region where the gonad develops.


Assuntos
Actinas/metabolismo , Movimento Celular , Polaridade Celular , Quimiocinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Transporte Proteico , Peixe-Zebra
6.
EMBO Rep ; 21(7): e49910, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32419336

RESUMO

The mechanisms by which cells exert forces on their nuclei to migrate through openings smaller than the nuclear diameter remain unclear. We use CRISPR/Cas9 to fluorescently label nesprin-2 giant, which links the cytoskeleton to the nuclear interior. We demonstrate that nesprin-2 accumulates at the front of the nucleus during nuclear deformation through narrow constrictions, independently of the nuclear lamina. We find that nesprins are mobile at time scales similar to the accumulation. Using artificial constructs, we show that the actin-binding domain of nesprin-2 is necessary and sufficient for this accumulation. Actin filaments are organized in a barrel structure around the nucleus in the direction of movement. Using two-photon ablation and cytoskeleton-inhibiting drugs, we demonstrate an actomyosin-dependent pulling force on the nucleus from the front of the cell. The elastic recoil upon ablation is dampened when nesprins are reduced at the nuclear envelope. We thus show that actin redistributes nesprin-2 giant toward the front of the nucleus and contributes to pulling the nucleus through narrow constrictions, in concert with myosin.


Assuntos
Núcleo Celular , Proteínas Nucleares , Actinas/genética , Movimento Celular , Membrana Nuclear , Proteínas Nucleares/genética
7.
EMBO J ; 36(2): 165-182, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27974362

RESUMO

SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild-type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Colágeno/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Animais , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout
8.
Nat Mater ; 19(9): 1019-1025, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32451510

RESUMO

Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This 'soft substrate effect' leads to an underestimation of a cell's elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a 'composite cell-substrate model'. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.


Assuntos
Córtex Cerebral/citologia , Diferenciação Celular , Módulo de Elasticidade , Microscopia de Força Atômica/métodos , Especificidade por Substrato
9.
Biophys J ; 114(1): 213-222, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320689

RESUMO

Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process.


Assuntos
Movimento Celular , Desenvolvimento Embrionário , Modelos Biológicos , Molhabilidade
10.
Biophys J ; 114(7): 1667-1679, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642036

RESUMO

Active diffusion of intracellular components is emerging as an important process in cell biology. This process is mediated by complex assemblies of molecular motors and cytoskeletal filaments that drive force generation in the cytoplasm and facilitate enhanced motion. The kinetics of molecular motors have been precisely characterized in vitro by single molecule approaches, but their in vivo behavior remains elusive. Here, we study the active diffusion of vesicles in mouse oocytes, where this process plays a key role in nuclear positioning during development, and combine an experimental and theoretical framework to extract molecular-scale force kinetics (force, power stroke, and velocity) of the in vivo active process. Assuming a single dominant process, we find that the nonequilibrium activity induces rapid kicks of duration τ ∼ 300 µs resulting in an average force of F ∼ 0.4 pN on vesicles in in vivo oocytes, remarkably similar to the kinetics of in vitro myosin-V. Our results reveal that measuring in vivo active fluctuations allows extraction of the molecular-scale activity in agreement with single-molecule studies and demonstrates a mesoscopic framework to access force kinetics.


Assuntos
Fenômenos Mecânicos , Oócitos/citologia , Animais , Fenômenos Biomecânicos , Difusão , Espaço Intracelular/metabolismo , Cinética , Camundongos , Modelos Biológicos , Movimento
11.
Biophys J ; 113(5): 1072-1079, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877490

RESUMO

Actin is one of the main components of the architecture of cells. Actin filaments form different polymer networks with versatile mechanical properties that depend on their spatial organization and the presence of cross-linkers. Here, we investigate the mechanical properties of actin bundles in the absence of cross-linkers. Bundles are polymerized from the surface of mDia1-coated latex beads, and deformed by manipulating both ends through attached beads held by optical tweezers, allowing us to record the applied force. Bundle properties are strikingly different from the ones of a homogeneous isotropic beam. Successive compression and extension leads to a decrease in the buckling force that we attribute to the bundle remaining slightly curved after the first deformation. Furthermore, we find that the bundle is solid, and stiff to bending, along the long axis, whereas it has a liquid and viscous behavior in the transverse direction. Interpretation of the force curves using a Maxwell visco-elastic model allows us to extract the bundle mechanical parameters and confirms that the bundle is composed of weakly coupled filaments. At short times, the bundle behaves as an elastic material, whereas at long times, filaments flow in the longitudinal direction, leading to bundle restructuring. Deviations from the model reveal a complex adaptive rheological behavior of bundles. Indeed, when allowed to anneal between phases of compression and extension, the bundle reinforces. Moreover, we find that the characteristic visco-elastic time is inversely proportional to the compression speed. Actin bundles are therefore not simple force transmitters, but instead, complex mechano-transducers that adjust their mechanics to external stimulation. In cells, where actin bundles are mechanical sensors, this property could contribute to their adaptability.


Assuntos
Actinas/metabolismo , Actinas/química , Adaptação Fisiológica , Fenômenos Biomecânicos , Elasticidade , Modelos Moleculares , Pinças Ópticas , Reologia , Estresse Mecânico , Viscosidade
12.
Biochim Biophys Acta ; 1853(11 Pt B): 3083-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26025677

RESUMO

Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.


Assuntos
Citoesqueleto/fisiologia , Metabolismo Energético/fisiologia , Modelos Biológicos , Animais , Humanos
13.
Phys Biol ; 12(6): 066020, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26717293

RESUMO

In the absence of simple noninvasive measurements, the knowledge of temporal and spatial variations of axons mechanics remains scarce. By extending thermal fluctuation spectroscopy (TFS) to long protrusions, we determine the transverse amplitude thermal fluctuation spectra that allow direct and simultaneous access to three key mechanics parameters: axial tension, bending flexural rigidity and plasma membrane tension. To test our model, we use PC12 cell protrusions-a well-know biophysical model of axons-in order to simplify the biological system under scope. For instance, axial and plasma membrane tension are found in the range of nano Newton and tens of pico Newtons per micron respectively. Furthermore, our results shows that the TFS technique is capable to distinguish quasi-identical protrusions. Another advantage of our approach is the time resolved nature of the measurements. Indeed, in the case of long term experiments on PC12 protrusions, TFS has revealed large temporal, correlated variations of the protrusion mechanics, displaying extraordinary feedback control over the axial tension in order to maintain a constant tension value.


Assuntos
Membrana Celular/química , Neuritos/fisiologia , Animais , Fenômenos Biomecânicos , Células PC12 , Ratos , Análise Espectral , Temperatura , Fatores de Tempo
14.
Biophys J ; 107(8): 1810-1820, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25418162

RESUMO

Mechanics is at the heart of many cellular processes and its importance has received considerable attention during the last two decades. In particular, the tension of cell membranes, and more specifically of the cell cortex, is a key parameter that determines the mechanical behavior of the cell periphery. However, the measurement of tension remains challenging due to its dynamic nature. Here we show that a noninvasive interferometric technique can reveal time-resolved effective tension measurements by a high-accuracy determination of edge fluctuations in expanding cell blebs of filamin-deficient melanoma cells. The introduced technique shows that the bleb tension is ~10-100 pN/µm and increases during bleb growth. Our results directly confirm that the subsequent stop of bleb growth is induced by an increase of measured tension, possibly mediated by the repolymerized actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/química , Membrana Celular/química , Microscopia de Interferência/métodos , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Tensão Superficial
15.
Biophys J ; 107(4): 854-62, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25140420

RESUMO

Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the "actin cloud" and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Módulo de Elasticidade , Modelos Biológicos , Dinâmica não Linear , Pinças Ópticas , Poliestirenos/química
16.
Biophys J ; 107(1): 43-54, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988340

RESUMO

The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.


Assuntos
Membrana Celular/parasitologia , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Plasmodium falciparum/patogenicidade , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Merozoítos/fisiologia
17.
Proc Natl Acad Sci U S A ; 108(33): 13420-5, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21813757

RESUMO

Many biochemical processes in the growth cone finally target its biomechanical properties, such as stiffness and force generation, and thus permit and control growth cone movement. Despite the immense progress in our understanding of biochemical processes regulating neuronal growth, growth cone biomechanics remains poorly understood. Here, we combine different experimental approaches to measure the structural and mechanical properties of a growth cone and to simultaneously determine its actin dynamics and traction force generation. Using fundamental physical relations, we exploited these measurements to determine the internal forces generated by the actin cytoskeleton in the lamellipodium. We found that, at timescales longer than the viscoelastic relaxation time of τ = 8.5 ± 0.5 sec, growth cones show liquid-like characteristics, whereas at shorter time scales they behaved elastically with a surprisingly low elastic modulus of E = 106 ± 21 Pa. Considering the growth cone's mechanical properties and retrograde actin flow, we determined the internal stress to be on the order of 30 pN per µm(2). Traction force measurements confirmed these values. Hence, our results indicate that growth cones are particularly soft and weak structures that may be very sensitive to the mechanical properties of their environment.


Assuntos
Fenômenos Biomecânicos , Cones de Crescimento/fisiologia , Neurogênese/fisiologia , Actinas/fisiologia , Animais , Citoesqueleto/fisiologia , Elasticidade , Humanos , Viscosidade
18.
Curr Opin Cell Biol ; 88: 102374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824902

RESUMO

Intracellular organization is a highly regulated homeostatic state maintained to ensure eukaryotic cells' correct and efficient functioning. Thanks to decades of research, vast knowledge of the proteins involved in intracellular transport and organization has been acquired. However, how these influence and potentially regulate the intracellular mechanical properties of the cell is largely unknown. There is a deep knowledge gap between the understanding of cortical mechanics, which is accessible by a series of experimental tools, and the intracellular situation that has been largely neglected due to the difficulty of performing intracellular mechanics measurements. Recently, tools required for such quantitative and localized analysis of intracellular mechanics have been introduced. Here, we review how these approaches and the resulting viscoelastic models lead the way to a full mechanical description of the cytoplasm, which is instrumental for a quantitative characterization of the intracellular life of cells.


Assuntos
Pinças Ópticas , Humanos , Animais , Citoplasma/metabolismo , Reologia , Fenômenos Biomecânicos
19.
20.
Nat Commun ; 14(1): 3760, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353493

RESUMO

Cellular membrane area is a key parameter for any living cell that is tightly regulated to avoid membrane damage. Changes in area-to-volume ratio are known to be critical for cell shape, but are mostly investigated by changing the cell volume via osmotic shocks. In turn, many important questions relating to cellular shape, membrane tension homeostasis and local membrane area cannot be easily addressed because experimental tools for controlled modulation of cell membrane area are lacking. Here we show that photoswitching an amphiphilic azobenzene can trigger its intercalation into the plasma membrane of various mammalian cells ranging from erythrocytes to myoblasts and cancer cells. The photoisomerization leads to a rapid (250-500 ms) and highly reversible membrane area change (ca 2 % for erythrocytes) that triggers a dramatic shape modulation of living cells.


Assuntos
Compostos Azo , Mamíferos , Animais , Membrana Celular , Pressão Osmótica , Tamanho Celular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa