RESUMO
Glucosinolates, a characteristic group of specialized metabolites found in Brassicales plants, are converted to toxic isothiocyanates upon herbivory. Several insect herbivores, including the cabbage stem flea beetle (Psylliodes chrysocephala), prevent glucosinolate activation by forming desulfo-glucosinolates. Here we investigated the molecular basis of glucosinolate desulfation in P. chrysocephala, an important pest of oilseed rape. Enzyme activity assays with crude beetle protein extracts revealed that glucosinolate sulfatase (GSS) activity is associated with the gut membrane and has narrow substrate specificity towards the benzenic glucosinolate sinalbin. In agreement with GSS activity localization in vivo, we identified six genes encoding arylsulfatase-like enzymes with a predicted C-terminal transmembrane domain, of which five showed GSS activity upon heterologous expression in insect cells. PcGSS1 and PcGSS2 used sinalbin and indol-3-ylmethyl glucosinolate as substrates, respectively, whereas PcGSS3, PcGSS4, and PcGSS5 showed weak activity in enzyme assays. RNAi-mediated knock-down of PcGSS1 and PcGSS2 expression in adult beetles confirmed their function in vivo. In a phylogenetic analysis of coleopteran and lepidopteran arylsulfatases, the P. chrysocephala GSSs formed a cluster within a coleopteran-specific sulfatase clade distant from the previously identified GSSs of the diamondback moth, Plutella xylostella, suggesting an independent evolution of GSS activity in ermine moths and flea beetles.
Assuntos
Besouros/enzimologia , Evolução Molecular , Glucosinolatos/metabolismo , Proteínas de Insetos/metabolismo , Sulfatases/metabolismo , Animais , Proteínas de Insetos/genética , Sulfatases/genéticaRESUMO
The cabbage stem flea beetle (Psylliodes chrysocephala) is a key pest of oilseed rape in Europe, and is specialized to feed on Brassicaceae plants armed with the glucosinolate-myrosinase defense system. Upon tissue damage, the ß-thioglucosidase enzyme myrosinase hydrolyzes glucosinolates (GLS) to form toxic isothiocyanates (ITCs) which deter non-adapted herbivores. Here, we show that P. chrysocephala selectively sequester GLS from their host plants and store these throughout their life cycle. In addition, P. chrysocephala metabolize GLS to desulfo-GLS, which implies the evolution of GLS sulfatase activity in this specialist. To assess whether P. chrysocephala can largely prevent GLS hydrolysis in ingested plant tissue by sequestration and desulfation, we analyzed the metabolic fate of 4-methylsulfinylbutyl (4MSOB) GLS in adults. Surprisingly, intact and desulfo-GLS together accounted for the metabolic fate of only 26% of the total ingested GLS in P. chrysocephala, indicating that most ingested GLS are nevertheless activated by the plant myrosinase. The presence of 4MSOB-ITC and the corresponding nitrile in feces extracts confirmed the activation of ingested GLS, but the detected amounts of unmetabolized ITCs were low. P. chrysocephala partially detoxifies ITCs by conjugation with glutathione via the conserved mercapturic acid pathway. In addition to known products of the mercapturic acid pathway, we identified two previously unknown cyclic metabolites derived from the cysteine-conjugate of 4MSOB-ITC. In summary, the cabbage stem flea beetle avoids ITC formation by specialized strategies, but also relies on and extends the conserved mercapturic acid pathway to prevent toxicity of formed ITCs.