Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Cell Physiol ; 324(2): C540-C552, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571444

RESUMO

Pancreatic ductal adenocarcinoma (PDA) has become one of the leading causes of cancer-related deaths across the world. A lack of durable responses to standard-of-care chemotherapies renders its treatment particularly challenging and largely contributes to the devastating outcome. Gemcitabine, a pyrimidine antimetabolite, is a cornerstone in PDA treatment. Given the importance of gemcitabine in PDA therapy, extensive efforts are focusing on exploring mechanisms by which cancer cells evade gemcitabine cytotoxicity, but strategies to overcome them have not been translated into patient care. Here, we will introduce the standard treatment paradigm for patients with PDA, highlight mechanisms of gemcitabine action, elucidate gemcitabine resistance mechanisms, and discuss promising strategies to circumvent them.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Neoplasias Pancreáticas
2.
Nat Cancer ; 3(11): 1386-1403, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36411320

RESUMO

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Asparagina/metabolismo , Adenocarcinoma/tratamento farmacológico , Simbiose , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Cancers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064221

RESUMO

Real-time isolation, propagation, and pharmacotyping of patient-derived pancreatic cancer organoids (PDOs) may enable treatment response prediction and personalization of pancreatic cancer (PC) therapy. In our methodology, PDOs are isolated from 54 patients with suspected or confirmed PC in the framework of a prospective feasibility trial. The drug response of single agents is determined by a viability assay. Areas under the curves (AUC) are clustered for each drug, and a prediction score is developed for combined regimens. Pharmacotyping profiles are obtained from 28 PDOs (efficacy 63.6%) after a median of 53 days (range 21-126 days). PDOs exhibit heterogeneous responses to the standard-of-care drugs, and are classified into high, intermediate, or low responder categories. Our developed prediction model allows a successful response prediction in treatment-naïve patients with an accuracy of 91.1% for first-line and 80.0% for second-line regimens, respectively. The power of prediction declines in pretreated patients (accuracy 40.0%), particularly with more than one prior line of chemotherapy. Progression-free survival (PFS) is significantly longer in previously treatment-naïve patients receiving a predicted tumor sensitive compared to a predicted tumor resistant regimen (mPFS 141 vs. 46 days; p = 0.0048). In conclusion, generation and pharmacotyping of PDOs is feasible in clinical routine and may provide substantial benefit.

4.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34503069

RESUMO

Impaired DNA damage repair (DDR) is increasingly recognised as a hallmark in pancreatic ductal adenocarcinoma (PDAC). It is estimated that around 14% of human PDACs harbour mutations in genes involved in DDR, including, amongst others, BRCA1/2, PALB2, ATM, MSH2, MSH6 and MLH1. Recently, DDR intervention by PARP inhibitor therapy has demonstrated effectiveness in germline BRCA1/2-mutated PDAC. Extending this outcome to the significant proportion of human PDACs with somatic or germline mutations in DDR genes beyond BRCA1/2 might be beneficial, but there is a lack of data, and consequently, no clear recommendations are provided in the field. Therefore, an expert panel was invited by the European Society of Digestive Oncology (ESDO) to assess the current knowledge and significance of DDR as a target in PDAC treatment. The aim of this virtual, international expert meeting was to elaborate a set of consensus recommendations on testing, diagnosis and treatment of PDAC patients with alterations in DDR pathways. Ahead of the meeting, experts completed a 27-question survey evaluating the key issues. The final recommendations herein should aid in facilitating clinical practice decisions on the management of DDR-deficient PDAC.

5.
Adv Sci (Weinh) ; 8(14): 2100626, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34306986

RESUMO

Somatic cell reprogramming and tissue repair share relevant factors and molecular programs. Here, Dickkopf-3 (DKK3) is identified as novel factor for organ regeneration using combined transcription-factor-induced reprogramming and RNA-interference techniques. Loss of Dkk3 enhances the generation of induced pluripotent stem cells but does not affect de novo derivation of embryonic stem cells, three-germ-layer differentiation or colony formation capacity of liver and pancreatic organoids. However, DKK3 expression levels in wildtype animals and serum levels in human patients are elevated upon injury. Accordingly, Dkk3-null mice display less liver damage upon acute and chronic failure mediated by increased proliferation in hepatocytes and LGR5+ liver progenitor cell population, respectively. Similarly, recovery from experimental pancreatitis is accelerated. Regeneration onset occurs in the acinar compartment accompanied by virtually abolished canonical-Wnt-signaling in Dkk3-null animals. This results in reduced expression of the Hedgehog repressor Gli3 and increased Hedgehog-signaling activity upon Dkk3 loss. Collectively, these data reveal Dkk3 as a key regulator of organ regeneration via a direct, previously unacknowledged link between DKK3, canonical-Wnt-, and Hedgehog-signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Genômica/métodos , Organogênese/genética , Organogênese/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Regeneração/genética , Regeneração/fisiologia
6.
Cells ; 9(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948057

RESUMO

Personalized medicine in treating pancreatic ductal adenocarcinoma (PDAC) is still in its infancy, albeit PDAC-related deaths are projected to rise over the next decade. Only recently, maintenance therapy with the PARP inhibitor olaparib showed improved progression-free survival in germline BRCA1/2-mutated PDAC patients after platinum-based induction for the first time. Transferability of such a concept to other DNA damage response (DDR) genes remains unclear. Here, we conducted a placebo-controlled, three-armed preclinical trial to evaluate the efficacy of multi-DDR interference (mDDRi) as maintenance therapy vs. continuous FOLFIRINOX treatment, implemented with orthotopically transplanted ATM-deficient PDAC cell lines. Kaplan-Meier analysis, cross-sectional imaging, histology, and in vitro analysis served as analytical readouts. Median overall survival was significantly longer in the mDDRi maintenance arm compared to the maintained FOLFIRINOX treatment. This survival benefit was mirrored in the highest DNA-damage load, accompanied by superior disease control and reduced metastatic burden. In vitro analysis suggests FOLFIRINOX-driven selection of invasive subclones, erased by subsequent mDDRi treatment. Collectively, this preclinical trial substantiates mDDRi in a maintenance setting as a novel therapeutic option and extends the concept to non-germline BRCA1/2-mutant PDAC.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Quimioterapia de Manutenção/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteína BRCA2/deficiência , Proteína BRCA2/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Instabilidade Cromossômica , Dano ao DNA , Feminino , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Irinotecano/uso terapêutico , Leucovorina/uso terapêutico , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Oxaliplatina/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Poli(ADP-Ribose) Polimerases , Análise de Sobrevida , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
United European Gastroenterol J ; 8(5): 594-606, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213029

RESUMO

BACKGROUND: Organotypic cultures derived from pancreatic ductal adenocarcinoma (PDAC) termed pancreatic ductal cancer organoids (PDOs) recapitulate the primary cancer and can be derived from primary or metastatic biopsies. Although isolation and culture of patient-derived pancreatic organoids were established several years ago, pros and cons for individualized medicine have not been comprehensively investigated to date. METHODS: We conducted a feasibility study, systematically comparing head-to-head patient-derived xenograft tumor (PDX) and PDX-derived organoids by rigorous immunohistochemical and molecular characterization. Subsequently, a drug testing platform was set up and validated in vivo. Patient-derived organoids were investigated as well. RESULTS: First, PDOs faithfully recapitulated the morphology and marker protein expression patterns of the PDXs. Second, quantitative proteomes from the PDX as well as from corresponding organoid cultures showed high concordance. Third, genomic alterations, as assessed by array-based comparative genomic hybridization, revealed similar results in both groups. Fourth, we established a small-scale pharmacotyping platform adjusted to operate in parallel considering potential obstacles such as culture conditions, timing, drug dosing, and interpretation of the results. In vitro predictions were successfully validated in an in vivo xenograft trial. Translational proof-of-concept is exemplified in a patient with PDAC receiving palliative chemotherapy. CONCLUSION: Small-scale drug screening in organoids appears to be a feasible, robust and easy-to-handle disease modeling method to allow response predictions in parallel to daily clinical routine. Therefore, our fast and cost-efficient assay is a reasonable approach in a predictive clinical setting.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Organoides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Adulto , Animais , Antineoplásicos/uso terapêutico , Biópsia , Carcinoma Ductal Pancreático/patologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Camundongos , Organoides/patologia , Pâncreas/citologia , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Estudo de Prova de Conceito , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Visc Med ; 35(1): 28-37, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31312647

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) and extrahepatic biliary tract cancer (BTC) are among the malignancies with the highest morbidity and mortality. Despite increasing knowledge on biology and novel therapies, outcome remains poor in these patients. Recent progress in immunotherapies created new hopes in the treatment of PDAC and extrahepatic BTC. Several trials tested immunotherapies in various therapeutic situations as monotherapies or in combinations. Although responses were seen in some of the trials, the value of immunotherapy in PDAC and extrahepatic BTC remains unclear in the current situation, especially regarding the complex biological characteristics with a high stroma component, intrinsic resistance mechanisms and an immunosuppressive, hypoxic microenvironment. These major hurdles have to be taken into account and overcome if immunotherapies should be successful in these tumor entities. Thereby, combinational approaches that allow on the one hand targeted therapy and on the other restore or boost the function of immune cells are promising.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa