Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Am Chem Soc ; 146(26): 17838-17846, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888422

RESUMO

Presilphiperfolan-8ß-ol synthase (BcBOT2), a substrate-promiscuous sesquiterpene cyclase (STC) of fungal origin, is capable of converting two new farnesyl pyrophosphate (FPP) derivatives modified at C7 of farnesyl pyrophosphate (FPP) bearing either a hydroxymethyl group or a methoxymethyl group. These substrates were chosen based on a computationally generated model. Biotransformations yielded five new oxygenated terpenoids. Remarkably, the formation of one of these tricyclic products can only be explained by a cationically induced migration of the methoxy group, presumably via a Meerwein-salt intermediate, unprecedented in synthetic chemistry and biosynthesis. The results show the great principle and general potential of terpene cyclases for mechanistic studies of unusual cation chemistry and for the creation of new terpene skeletons.


Assuntos
Sesquiterpenos , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo
2.
Molecules ; 24(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540161

RESUMO

The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men's fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid-liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid-liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L-1 and productivity of 3.2 mg L-1 h-1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.


Assuntos
Escherichia coli/genética , Óleos Voláteis/química , Sesquiterpenos Policíclicos/metabolismo , Adsorção , Reatores Biológicos , Vetiveria/química , Eficiência , Escherichia coli/metabolismo , Fermentação , Microbiologia Industrial , Engenharia Metabólica , Sesquiterpenos Policíclicos/isolamento & purificação , Volatilização
3.
Molecules ; 25(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906121

RESUMO

Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of E. coli K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis. To ensure adequate biopharmaceutical quality of the product, the removal of byproducts and contaminants, such as endotoxins, is essential. Recent studies have revealed that the long-term incubation in alkaline sodium hydroxide (NaOH) solutions reduces the endotoxin content down to 3 EU (endotoxin units) per mg, which is in the range of pharmaceutical applications. In this study, we analyzed interferences in the intramolecular structure of polySia caused by harsh NaOH treatment or thermal hydrolysis. Nuclear magnetic resonance (NMR) spectroscopy revealed that neither the incubation in an alkaline solution nor the thermal hydrolysis induced any chemical modification. In addition, HPLC analysis with a preceding 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization demonstrated that the alkaline treatment did not induce any hydrolytic effects to reduce the maximum polymer length and that the controlled thermal hydrolysis reduced the maximum chain length effectively, while cost-effective incubation in alkaline solutions had no adverse effects on LC polySia. Therefore, both methods guarantee the production of high-purity, low-molecular-weight polySia without alterations in the structure, which is a prerequisite for the submission of a marketing authorization application as a medicinal product. However, a specific synthesis of low-molecular-weight polySia with defined chain lengths is only possible to a limited extent.


Assuntos
Ácidos Siálicos/biossíntese , Ácidos Siálicos/isolamento & purificação , Biotecnologia , Cromatografia Líquida de Alta Pressão , Endotoxinas/química , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Hidrólise , Espectroscopia de Ressonância Magnética , Peso Molecular , Fenilenodiaminas/química , Polimerização , Ácidos Siálicos/química , Hidróxido de Sódio/química , Temperatura
4.
Angew Chem Int Ed Engl ; 57(36): 11802-11806, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29953712

RESUMO

The substrate flexibility of eight purified sesquiterpene cyclases was evaluated using six new heteroatom-modified farnesyl pyrophosphates, and the formation of six new heteroatom-modified macrocyclic and tricyclic sesquiterpenoids is described. GC-O analysis revealed that tricyclic tetrahydrofuran exhibits an ethereal, peppery, and camphor-like olfactoric scent.

5.
Appl Microbiol Biotechnol ; 101(2): 599-607, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27522196

RESUMO

The objective of this study was to use for the first time depth filters, which are usually intended for clarification of cell culture broth, as a direct immobilization support/matrix for industrially relevant enzymes. With this method, it is not only possible to immobilize pure enzymes; it can be also used for capturing recombinant enzymes directly out of culture supernatant. Therefore, the depth filters were coated with different anionic and cationic polymer layers by Layer-by-Layer (LbL) technology. The immobilization behavior of the model enzyme Candida antarctica lipase B (CalB) was examined. Optimal conditions for lipase immobilization were found for anionic surfaces with Poly (allylamin hydrochlorid) (PAH)/Poly (sodium-4-styrene sulfonate) (PSS) coating in 20 mM acetate buffer pH 4. Stability studies showed that immobilized CalB is 1.7-fold more stable when storage is carried out in buffer at 4 °C, compared to storage in buffer at room temperature or storage after drying at 30 °C for 24 h. The calculated half-life period is 108 days until half of the activity was lost. Furthermore, the possibility of direct capture of the CalB either from sonicated culture broth (Escherichia coli) or from cell-free supernatant was tested. Filter blocking prevented the immobilization of lipase from sonicated culture broth, but immobilization from cell-free supernatant could be performed successfully at moderate biomass content (OD600 = 7.0).


Assuntos
Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Lipase/química , Ligação Proteica , Temperatura
6.
Appl Microbiol Biotechnol ; 101(1): 123-130, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27542381

RESUMO

In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 105 U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.


Assuntos
Proteína Morfogenética Óssea 2/isolamento & purificação , Proteína Morfogenética Óssea 2/metabolismo , Cromatografia/métodos , Dobramento de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Escherichia coli/metabolismo , Humanos
7.
Appl Microbiol Biotechnol ; 100(9): 4147-59, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26940052

RESUMO

The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.


Assuntos
Técnicas Citológicas/métodos , Escherichia coli/química , Corpos de Inclusão/química , Proteínas Recombinantes/análise , Reatores Biológicos/microbiologia , Técnicas de Química Analítica , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Luz , Reprodutibilidade dos Testes
8.
Anal Biochem ; 477: 35-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25684109

RESUMO

In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore, a convenient dilution of both components (up to 1 and 5 wt%) before protein quantification is recommended in both assays, respectively, where the BCA assay is favored in comparison with the Bradford assay.


Assuntos
Colorimetria/métodos , Proteínas/análise , Água/química , Citratos/química , Fosfatos/química , Polietilenoglicóis/química , Compostos de Potássio/química , Citrato de Sódio
9.
Appl Microbiol Biotechnol ; 99(16): 6599-616, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26150244

RESUMO

Nowadays, there is an increasing demand to establish new feasible, efficient downstream processing (DSP) techniques in biotechnology and related fields. Although several conventional DSP technologies have been widely employed, they are usually expensive and time-consuming and often provide only low recovery yields. Hence, the DSP is one major bottleneck for the commercialization of biological products. In this context, polyethylene glycol (PEG)-salt aqueous two-phase systems (ATPS) represent a promising, efficient liquid-liquid extraction technology for the DSP of various biomolecules, such as proteins and enzymes. Furthermore, ATPS can overcome the limitations of traditional DSP techniques and have gained importance for applications in several fields of biotechnology due to versatile advantages over conventional DSP methods, such as biocompatibility, technical simplicity, and easy scale-up potential. In the present review, various practical applications of PEG-salt ATPS are presented to highlight their feasibility to operate as an attractive and versatile liquid-liquid extraction technology for the DSP of proteins and enzymes, thus facilitating the approach of new researchers to this technique. Thereby, single- and multi-stage extraction, several process integration methods, as well as large-scale extraction and purification of proteins regarding technical aspects, scale-up, recycling of process chemicals, and economic aspects are discussed.


Assuntos
Enzimas/isolamento & purificação , Extração Líquido-Líquido/métodos , Polietilenoglicóis/química , Proteínas/isolamento & purificação , Sais/química , Soluções/química , Biotecnologia/métodos
10.
Anal Biochem ; 455: 10-2, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24657359

RESUMO

In the current work, the quantification of different poly(ethylene glycol) (PEG)-potassium phosphate/sodium citrate aqueous two-phase system (ATPS) phase-forming components was investigated by using conductivity and refractive index measurements. For this purpose, refractive index and conductivity calibration curves were obtained for ATPS at different pH values in the presence of different bovine serum albumin (BSA) concentrations. Whereas BSA had no effect on the conductivity, it had a considerable effect on the refractive index. Finally, a convenient dilution of the samples prior to the ATPS constituent determination is needed to ensure no significant influence from BSA.


Assuntos
Bioquímica/métodos , Polietilenoglicóis/química , Soroalbumina Bovina/química , Calibragem , Citratos/química , Concentração de Íons de Hidrogênio , Fosfatos/química , Compostos de Potássio/química , Refratometria , Citrato de Sódio , Água
11.
Sensors (Basel) ; 14(9): 17390-405, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232914

RESUMO

In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.


Assuntos
Análise da Demanda Biológica de Oxigênio/instrumentação , Contagem de Células/instrumentação , Proliferação de Células/fisiologia , Densitometria/instrumentação , Fotometria/instrumentação , Refratometria/instrumentação , Animais , Células CHO , Tamanho Celular , Cricetulus , Desenho de Equipamento , Análise de Falha de Equipamento , Sistemas On-Line , Integração de Sistemas
12.
Angew Chem Int Ed Engl ; 53(5): 1439-42, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24459060

RESUMO

Flavonoids are a large group of plant secondary metabolites with a variety of biological properties and are therefore of interest to many scientists, as they can lead to industrially interesting intermediates. The anaerobic gut bacterium Eubacterium ramulus can catabolize flavonoids, but until now, the pathway has not been experimentally confirmed. In the present work, a chalcone isomerase (CHI) and an enoate reductase (ERED) could be identified through whole genome sequencing and gene motif search. These two enzymes were successfully cloned and expressed in Escherichia coli in their active form, even under aerobic conditions. The catabolic pathway of E. ramulus was confirmed by biotransformations of flavanones into dihydrochalcones. The engineered E. coli strain that expresses both enzymes was used for the conversion of several flavanones, underlining the applicability of this biocatalytic cascade reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Eubacterium/enzimologia , Flavonoides/metabolismo , Liases Intramoleculares/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Cristalografia por Raios X , Escherichia coli/metabolismo , Eubacterium/genética , Flavanonas/química , Flavanonas/metabolismo , Flavonoides/química , Liases Intramoleculares/genética , Oxirredutases/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Análise de Sequência de DNA
13.
Eng Life Sci ; 24(4): 2300238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584688

RESUMO

Digitalization with integrated devices, digital and physical assistants, automation, and simulation is setting a new direction for laboratory work. Even with complex research workflows, high staff turnover, and a limited budget some laboratories have already shown that digitalization is indeed possible. However, academic bioprocess laboratories often struggle to follow the trend of digitalization. Due to their diverse research circumstances, high variety of team composition, goals, and limitations the concepts are substantially different. Here, we will provide an overview on different aspects of digitalization and describe how academic laboratories successfully digitalized their working environment. The key aspect is the collaboration and communication between IT-experts and scientific staff. The developed digital infrastructure is only useful if it supports the laboratory worker and does not complicate their work. Thereby, laboratory researchers have to collaborate closely with IT-experts in order for a well-developed and maintainable digitalization concept that fits their individual needs and level of complexity. This review may serve as a starting point or a collection of ideas for the transformation toward a digitalized laboratory.

14.
Anal Chem ; 85(17): 8121-6, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23889679

RESUMO

A new in-line method for the monitoring of enzymatic hydrolysis of cellulose is described. Using a new in situ microscope prototype, the noninvasive determination of particle size distributions was possible. For the automated analysis of the acquired images, a new processing algorithm called CelluloseAnalyzer was developed. It enabled tracking of the number of particles and moreover allowed monitoring of the proportions of particle size fractions during the course of enzymatic hydrolysis reactions. Using this technique, significant differences between hydrolysis with endoglucanases and cellulase mixtures were observed. Furthermore, the in situ microscopy results were compared with results from off-line measurements with laser diffraction spectroscopy and gel permeation chromatography.


Assuntos
Celulose/metabolismo , Ensaios Enzimáticos/métodos , Microscopia/métodos , Cromatografia em Gel/métodos , Hidrólise
15.
Appl Microbiol Biotechnol ; 97(3): 929-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23224587

RESUMO

This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Membranas , Meios de Cultura/química
16.
Eng Life Sci ; 23(11): e2300013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970521

RESUMO

The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming Bacillus spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different Bacillus spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.

17.
Eng Life Sci ; 23(10): e2300210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37795343

RESUMO

Bacillus coagulans is a promising probiotic, because it combines probiotic properties of Lactobacillus and the ability of Bacillus to form endospores. Due to this hybrid relationship, cultivation of this organism is challenging. As the probiotics market continues to grow, there is a new focus on the production of these microorganisms. In this work, a strain-specific bioprocess for B. coagulans was developed to support growth on one hand and ensure sporulation on the other hand. This circumstance is not trivial, since these two metabolic states are contrary. The developed bioprocess uses a modified chemically defined medium which was further investigated in a one-factor-at-a-time assay after adaptation. A transfer from the shake flask to the bioreactor was successfully demonstrated in the scope of this work. The investigated process parameters included temperature, agitation and pH-control. Especially the pH-control improved the sporulation in the bioreactor when compared to shake flasks. The bioprocess resulted in a sporulation efficiency of 80%-90%. This corresponds to a sevenfold increase in sporulation efficiency due to a transfer to the bioreactor with pH-control. Additionally, a design of experiment (DoE) was conducted to test the robustness of the bioprocess. This experiment validated the beforementioned sporulation efficiency for the developed bioprocess. Afterwards the bioprocess was then scaled up from a 1 L scale to a 10 L bioreactor scale. A comparable sporulation efficiency of 80% as in the small scale was achieved. The developed bioprocess facilitates the upscaling and application to an industrial scale, and can thus help meet the increasing market for probiotics.

18.
Eng Life Sci ; 23(9): e2300204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664010

RESUMO

In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand. For successful bioprocess development, monitoring of process-relevant parameters, such as pH, dissolved oxygen (DO), and biomass, is crucial. Online monitoring is preferred as offline sampling is time-consuming and leads to loss of information. In this study, 3D-printed cultivation vessels with optical prisms are evaluated for the use in upstream processes of different industrially relevant microorganisms and cell lines. It was shown, that the 3D-printed optically modified well (OMW) is of benefit for a wide range of biotechnologically relevant microorganisms and even for mammalian suspension cells. Evaluation tests with Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, and Chinese hamster ovary (CHO) cells were performed, providing highly reproducible results. Growth behavior of OMW cultures was comparable to behavior of shake flask (SF) cultivations and the signal to noise ratio in online biomass measurement was shown to be reduced up to 95.8% by using the OMW. Especially the cultivation phases with low turbidity respective optical densities below 1.0 rel.AU could be monitored accurately for the first time. Furthermore, it was demonstrated that the 3D-printed optics are transferable to different well geometries and sizes, enabling efficient biomass monitoring for individual requirements with tailor-made 3D-printed cultivation vessels in small scale.

19.
Eng Life Sci ; 23(2): 2200026, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751470

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions' continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening. For this purpose, virus testing in the form of polymerase chain reaction (PCR) analysis and antibody detection in blood can be central. Mobile SARS-CoV-2 screening facilities with a built-in biosafety level (BSL)-2 laboratory were set up to allow the testing offer to be brought close to the subject group's workplace. University staff members, their expertise, and already available equipment were used to implement and operate the screening facilities and a certified diagnostic laboratory. This operation also included specimen collection, transport, PCR and antibody analysis, and informing subjects as well as public health departments. Screening facilities were established at different locations such as educational institutions, nursing homes, and companies providing critical supply chains for health care. Less than 4 weeks after the first imposed lockdown in Germany, a first mobile testing station was established featuring a build-in laboratory with two similar stations commencing operation until June 2020. During the 15-month project period, approximately 33,000 PCR tests and close to 7000 antibody detection tests were collected and analyzed. The presented approach describes the required procedures that enabled the screening facilities and laboratories to collect and process several hundred specimens each day under difficult conditions. This report can assist others in establishing similar setups for pandemic scenarios.

20.
Eng Life Sci ; 22(6): 440-452, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35663480

RESUMO

Integrating optical sensors and 3D-printed optics into single-use (SU) cultivation vessels for customized, tailor-made equipment could be a next big step in the bioreactor and screening platform development enabling online bioprocess monitoring. Many different parameters such as pH, oxygen, carbon dioxide and optical density (OD) can be monitored more easily using online measuring instruments compared to offline sampling. Space-saving integrated sensors in combination with adapted optics such as prisms open up vastly new possibilities to precisely guide light through SU vessels. This study examines how optical prisms can be 3D-printed with a 3D-inkjet printer, modified and then evaluated in a custom made optical bench. The prisms are coated or bonded with thin cover glasses. For the examination of reflectance performance and conformity prisms are compared on the basis of measured characteristics of a conventional glass prism. In addition, the most efficient and reproducible prism geometry and modification technique is applied to a customized 3D-printed cultivation vessel. The vessel is evaluated on a commercial sensor-platform, a shake flask reader (SFR) vario, to investigate its sensing-characteristics while monitoring scattered light with the turbidity standard formazine and a cell suspension of Saccharomyces cerevisiae as model organism. It is demonstrated that 3D-printed prisms can be used in combination with commercial scattered light sensor-platforms to determine OD of a microbial culture and that a 3D-printed unibody design with integrated optics in a cultivation vessel is feasible. In the range of OD600 0-1.16 rel.AU a linear correlation between sensor amplitude and offline determined OD can be achieved. Thus, enabling for the first time a measurement of low cell densities with the SFR vario platform. Moreover, sensitivity is also at least three times higher compared to the commonly used method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa