Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674922

RESUMO

A mass spectrometry-based lipidomic investigation of 30 patients with chronic hepatitis C virus (HCV) infection and 30 age- and sex-matched healthy blood donor controls was undertaken. The clustering and complete separation of these two groups was found by both unsupervised and supervised multivariate data analyses. Three patients who had spontaneously cleared the virus and three who were successfully treated with direct-acting antiviral drugs remained within the HCV-positive metabotype, suggesting that the metabolic effects of HCV may be longer-lived. We identified 21 metabolites that were upregulated in plasma and 34 that were downregulated (p < 1 × 10-16 to 0.0002). Eleven members of the endocannabinoidome were elevated, including anandamide and eight fatty acid amides (FAAs). These likely activated the cannabinoid receptor GPR55, which is a pivotal host factor for HCV replication. FAAH1, which catabolizes FAAs, reduced mRNA expression. Four phosphosphingolipids, d16:1, d18:1, d19:1 sphingosine 1-phosphate, and d18:0 sphinganine 1-phosphate, were increased, together with the mRNA expression for their synthetic enzyme SPHK1. Among the most profoundly downregulated plasma lipids were several lysophosphatidylinositols (LPIs) from 3- to 3000-fold. LPIs are required for the synthesis of phosphatidylinositol 4-phosphate (PI4P) pools that are required for HCV replication, and LPIs can also activate the GPR55 receptor. Our plasma lipidomic findings shed new light on the pathobiology of HCV infection and show that a subset of bioactive lipids that may contribute to liver pathology is altered by HCV infection.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus/fisiologia , Endocanabinoides , Replicação Viral , Antivirais , RNA Mensageiro
2.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745058

RESUMO

Ascites is a common complication of decompensated liver cirrhosis, and yet relatively little is known about its biochemical composition. We conducted two metabolomic investigations, comparing the profile of ascites from 33 cirrhotic patients and postoperative peritoneal drainage fluid from 33 surgical patients (Experiment 1). The profile of paired ascites and plasma was also compared in 17 cirrhotic patients (Experiment 2). Gas chromatography−mass spectrometry-based metabolomics identified 29 metabolites that significantly characterized ascites fluid, whether postoperative drainage fluid or plasma were used as controls. Ten elevated amino acids (glutamine, proline, histidine, tyrosine, glycine, valine, threonine, methionine, lysine, phenylalanine) and seven diminished lipids (laurate, myristate, palmitate, oleate, vaccenate, stearate, cholesterol) largely comprised the cirrhotic ascites metabolomic phenotype that differed significantly (adjusted p < 0.002 to 0.03) from peritoneal drainage fluid or plasma. The pattern of upregulated amino acids in cirrhotic ascites did not indicate albumin proteolysis by peritoneal bacteria. Bidirectional clustering showed that the more severe the cirrhosis, the lower the lipid concentration in ascitic fluid. The metabolomic compartment of ascites in patients with decompensated cirrhosis is characterized by increased amino acids and decreased lipids. These novel findings have potential relevance for diagnostic purposes.


Assuntos
Ascite , Cirrose Hepática , Aminoácidos , Ascite/metabolismo , Colesterol , Humanos , Cirrose Hepática/metabolismo , Metabolômica
3.
J Lipid Res ; 55(11): 2309-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193995

RESUMO

A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint(-/-)) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1(-/-) mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1(-/-) mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1(-/-) mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1(-/-) mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.


Assuntos
Genes Supressores de Tumor , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Animais , Técnicas de Inativação de Genes , Lipídeos/sangue , Masculino , Camundongos
4.
Hepatology ; 58(1): 229-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23463346

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and down-regulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding nontumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS)-based metabolomics. HCC was characterized by ∼2-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a 4-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol, or stearic acid tissue concentrations were found, suggesting that the Wnt/ß-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. CONCLUSION: Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process.


Assuntos
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Metabolômica , Transcriptoma , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/classificação , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica/métodos , Humanos , Metabolismo dos Lipídeos/fisiologia , Neoplasias Hepáticas/classificação
5.
J Hepatol ; 59(4): 842-58, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23714158

RESUMO

The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid ß-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.


Assuntos
Doenças Biliares/metabolismo , Hepatopatias/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Doenças Biliares/etiologia , Carcinoma Hepatocelular/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colangiocarcinoma/metabolismo , Colecistite/metabolismo , Colestase/metabolismo , Progressão da Doença , Fígado Gorduroso/metabolismo , Hepatite B Crônica/metabolismo , Hepatite C Crônica/metabolismo , Humanos , Cirrose Hepática/metabolismo , Hepatopatias/etiologia , Hepatopatias/cirurgia , Hepatopatias Alcoólicas/metabolismo , Neoplasias Hepáticas/metabolismo , Transplante de Fígado , Metabolômica , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica
6.
Xenobiotica ; 43(11): 973-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23614566

RESUMO

1. Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest that CYP2D6 may have a function in the central nervous system. 2. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type (WT) C57BL/6 mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including the CYP2D6 gene and 5'- and 3'-flanking sequences. 3. Human CYP2D6 was expressed not only in the liver but also in the brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice, either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of L-carnitine, acetyl-L-carnitine, pantothenic acid, 2'-deoxycytidine diphosphate (dCDP), anandamide, N-acetylglucosaminylamine and a down-regulation of stearoyl-L-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. 4. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function.


Assuntos
Sistema Nervoso Central/enzimologia , Citocromo P-450 CYP2D6/metabolismo , Animais , Comportamento Animal , Líquido Cefalorraquidiano/metabolismo , Análise Discriminante , Feminino , Humanos , Imuno-Histoquímica , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Análise de Componente Principal , Serotonina/metabolismo , Distribuição Tecidual , Transgenes , Urina
7.
Pharmacol Ther ; 243: 108366, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36842616

RESUMO

In this review we trace the passage of fundamental ideas through 20th century cancer research that began with observations on mustard gas toxicity in World War I. The transmutation of these ideas across scientific and national boundaries, was channeled from chemical carcinogenesis labs in London via Yale and Chicago, then ultimately to the pharmaceutical industry in Bielefeld, Germany. These first efforts to checkmate cancer with chemicals led eventually to the creation of one of the most successful groups of cancer chemotherapeutic drugs, the oxazaphosphorines, first cyclophosphamide (CP) in 1958 and soon thereafter its isomer ifosfamide (IFO). The giant contributions of Professor Sir Alexander Haddow, Dr. Alfred Z. Gilman & Dr. Louis S. Goodman, Dr. George Gomori and Dr. Norbert Brock step by step led to this breakthrough in cancer chemotherapy. A developing understanding of the metabolic disposition of ifosfamide directed efforts to ameliorate its side-effects, in particular, ifosfamide-induced encephalopathy (IIE). This has resulted in several candidates for the encephalopathic metabolite, including 2-chloroacetaldehyde, 2-chloroacetic acid, acrolein, 3-hydroxypropionic acid and S-carboxymethyl-L-cysteine. The pros and cons for each of these, together with other IFO metabolites, are discussed in detail. It is concluded that IFO produces encephalopathy in susceptible patients, but CP does not, by a "perfect storm," involving all of these five metabolites. Methylene blue (MB) administration appears to be generally effective in the prevention and treatment of IIE, in all probability by the inhibition of monoamine oxidase in brain potentiating serotonin levels that modulate the effects of IFO on GABAergic and glutamatergic systems. This review represents the authors' analysis of a large body of published research.


Assuntos
Antineoplásicos , Encefalopatias , Humanos , Ifosfamida/efeitos adversos , Ifosfamida/metabolismo , Antineoplásicos/efeitos adversos , Ciclofosfamida , Encefalopatias/induzido quimicamente , Encefalopatias/tratamento farmacológico , Azul de Metileno/efeitos adversos
8.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766828

RESUMO

We wished to understand the metabolic reprogramming underlying liver fibrosis progression in mice. Administration to male C57BL/6J mice of the hepatotoxins carbon tetrachloride (CCl4), thioacetamide (TAA), or a 60% high-fat diet, choline-deficient, amino-acid-defined diet (HF-CDAA) was conducted using standard protocols. Livers collected at different times were analyzed by gas chromatography-mass spectrometry-based metabolomics. RNA was extracted from liver and assayed by qRT-PCR for mRNA expression of 11 genes potentially involved in the synthesis of ascorbic acid from hexoses, Gck, Adpgk, Hk1, Hk2, Ugp2, Ugdh, Ugt1a1, Akr1a4, Akr1b3, Rgn and Gulo. All hepatotoxins resulted in similar metabolic changes during active fibrogenesis, despite different etiology and resultant scarring pattern. Diminished hepatic glucose, galactose, fructose, pentose phosphate pathway intermediates, glucuronic acid and long-chain fatty acids were compensated by elevated ascorbate and the product of collagen prolyl 4-hydroxylase, succinate and its downstream metabolites fumarate and malate. Recovery from the HF-CDAA diet challenge (F2 stage fibrosis) after switching to normal chow was accompanied by increased glucose, galactose, fructose, ribulose 5-phosphate, glucuronic acid, the ascorbate metabolite threonate and diminished ascorbate. During the administration of CCl4, TAA and HF-CDAA, aldose reductase Akr1b3 transcription was induced six- to eightfold, indicating increased conversion of glucuronic acid to gulonic acid, a precursor of ascorbate synthesis. Triggering hepatic fibrosis by three independent mechanisms led to the hijacking of glucose and galactose metabolism towards ascorbate synthesis, to satisfy the increased demand for ascorbate as a cofactor for prolyl 4-hydroxylase for mature collagen production. This metabolic reprogramming and causal gene expression changes were reversible. The increased flux in this pathway was mediated predominantly by increased transcription of aldose reductase Akr1b3.


Assuntos
Aldeído Redutase , Galactose , Animais , Masculino , Camundongos , Ácido Ascórbico , Colágeno , Dieta Hiperlipídica , Frutose , Glucose , Glucuronatos , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 13(1): 7706, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173385

RESUMO

Over the years, a substantial body of information has accumulated suggesting dietary consumption of grapes may have a positive influence on human health. Here, we investigate the potential of grapes to modulate the human microbiome. Microbiome composition as well as urinary and plasma metabolites were sequentially assessed in 29 healthy free-living male (age 24-55 years) and female subjects (age 29-53 years) following two-weeks of a restricted diet (Day 15), two-weeks of a restricted diet with grape consumption (equivalent to three servings per day) (Day 30), and four-weeks of restricted diet without grape consumption (Day 60). Based on alpha-diversity indices, grape consumption did not alter the overall composition of the microbial community, other than with the female subset based on the Chao index. Similarly, based on beta-diversity analyses, the diversity of species was not significantly altered at the three time points of the study. However, following 2 weeks of grape consumption, taxonomic abundance was altered (e.g., decreased Holdemania spp. and increased Streptococcus thermophiles), as were various enzyme levels and KEGG pathways. Further, taxonomic, enzyme and pathway shifts were observed 30 days following the termination of grape consumption, some of which returned to baseline and some of which suggest a delayed effect of grape consumption. Metabolomic analyses supported the functional significance of these alterations wherein, for example, 2'-deoxyribonic acid, glutaconic acid, and 3-hydroxyphenylacetic acid were elevated following grape consumption and returned to baseline following the washout period. Inter-individual variation was observed and exemplified by analysis of a subgroup of the study population showing unique patterns of taxonomic distribution over the study period. The biological ramifications of these dynamics remain to be defined. However, while it seems clear that grape consumption does not perturb the eubiotic state of the microbiome with normal, healthy human subjects, it is likely that shifts in the intricate interactive networks that result from grape consumption have physiological significance of relevance to grape action.


Assuntos
Microbiota , Vitis , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Vitis/metabolismo , Dieta , Plasma , Metabolômica
10.
J Surg Res ; 178(2): 879-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22947700

RESUMO

BACKGROUND: Diagnosis of intestinal ischemia remains a clinical challenge. The aim of the present study was to use a metabolomic protocol to identify upregulated and downregulated small molecules (M(r) < 500) in the serum of mice with intestinal ischemia. Such molecules could have clinical utility when evaluated as biomarkers in human studies. METHODS: A mouse model for intestinal ischemia was established and validated using histology and serum tumor necrosis factor α concentrations. A second mouse model of peritoneal sepsis was used as a positive control. Serial serum samples were collected from these and from sham-operated animals. Sera were analyzed by gas chromatography-mass spectrometry for 40 small molecules as their trimethylsilyl and O-methyloxime derivatives. Peak areas were normalized against an internal standard and resultant peak area ratios subjected to multivariate data analysis using unsupervised principal components analysis and supervised orthogonal projection to latent structures-discriminant analysis. Upregulated and downregulated serum molecules were identified from their correlation to the orthogonal projection to latent structures-discriminant analysis model. RESULTS: Three highly significantly upregulated (fold-change) serum molecules in intestinal ischemia were inorganic phosphate (2.4), urea (4.3), and threonic acid (2.9). Five highly significantly downregulated (fold-change) serum molecules were stearic acid (1.7), arabinose (2.7), xylose (1.6), glucose (1.4), and ribose (2.2). Lactic acid remained unchanged in intestinal ischemia. CONCLUSIONS: Distinct molecular changes are reported here for the first time in intestinal ischemia. They reveal impairments of gut microbiota metabolism, intestinal absorption, and renal function, together with increased oxidative stress. In contrast to other reports, lactic acid was not significantly changed. These molecular signatures may now be evaluated in clinical studies.


Assuntos
Intestinos/irrigação sanguínea , Isquemia/metabolismo , Metabolômica , Animais , Biomarcadores , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal
11.
Biochem Pharmacol ; 204: 115225, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998677

RESUMO

Hepatocellular carcinoma (HCC) arises principally against a background of cirrhosis and these two diseases are responsible globally for over 2 million deaths a year. There are few treatment options for liver cirrhosis and HCC, so it is vital to arrest these pathologies early in their development. To do so, we propose dietary and therapeutic solutions that involve the gut microbiota and its consequences. Integrated dietary, environmental and intrinsic signals result in a bidirectional connection between the liver and the gut with its microbiota, known as the gut-liver axis. Numerous lifestyle factors can result in dysbiosis with a change in the functional composition and metabolic activity of the microbiota. A panoply of metabolites can be produced by the microbiota, including ethanol, secondary bile acids, trimethylamine, indole, quinolone, phenazine and their derivatives and the quorum sensor acyl homoserine lactones that may contribute to HCC but have yet to be fully investigated. Gram-negative bacteria can activate the pattern recognition receptor toll-like receptor 4 (TLR4) in the liver leading to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, which can contribute to HCC initiation and progression. The goal in preventing HCC should be to ensure a healthy gut microbiota using probiotic supplements containing beneficial bacteria and prebiotic plant fibers such as oligosaccharides that stimulate their growth. The clinical development of TLR4 antagonists is urgently needed to counteract the pathological effects of dysbiosis on the liver and other organs. Further nutrigenomic studies are required to understand better how the diet influences the gut microbiota and its adverse effects on the liver.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Quinolonas , Acil-Butirolactonas/farmacologia , Ácidos e Sais Biliares/farmacologia , Carcinoma Hepatocelular/prevenção & controle , Disbiose , Etanol/farmacologia , Humanos , Indóis/farmacologia , Cirrose Hepática , Neoplasias Hepáticas/prevenção & controle , NF-kappa B , Fenazinas/farmacologia , Prebióticos , Quinolonas/farmacologia , Receptor 4 Toll-Like/metabolismo
12.
Antioxidants (Basel) ; 11(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36552580

RESUMO

Over three million Americans are affected by skin cancer each year, largely as a result of exposure to sunlight. The purpose of this study was to determine the potential of grape consumption to modulate UV-induced skin erythema. With 29 human volunteers, we report that nine demonstrated greater resistance to UV irradiation of the skin after consuming the equivalent of three servings of grapes per day for two weeks. We further explored any potential relationship to the gut-skin axis. Alpha- and beta-diversity of the gut microbiome were not altered, but grape consumption modulated microbiota abundance, enzyme levels, and KEGG pathways. Striking differences in the microbiome and metabolome were discerned when comparing the nine individuals showing greater UV resistance with the 20 non-responders. Notably, three urinary metabolites, 2'-deoxyribonic acid, 3-hydroxyphenyl acetic and scyllo-inositol, were depressed in the UV-resistant group. A ROC curve revealed a 71.8% probability that measurement of urinary 2'-deoxyribonic acid identifies a UV skin non-responder. 2'-Deoxyribonic acid is cleaved from the DNA backbone by reactive oxygen species. Three of the nine subjects acquiring UV resistance following grape consumption showed a durable response, and these three demonstrated unique microbiomic and metabolomic profiles. Variable UV skin sensitivity was likely due to glutathione S-transferase polymorphisms. We conclude that a segment of the population is capable of demonstrating greater resistance to a dermal response elicited by UV irradiation as a result of grape consumption. It is uncertain if modulation of the gut-skin axis leads to enhanced UV resistance, but there is correlation. More broadly, it is reasonable to expect that these mechanisms relate to other health outcomes anticipated to result from grape consumption.

13.
Foods ; 11(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35804799

RESUMO

A key objective of this study was to explore the potential of dietary grape consumption to modulate adverse effects caused by a high-fat (western-pattern) diet. Female C57BL/6J mice were purchased at six-weeks-of-age and placed on a standard (semi-synthetic) diet (STD). At 11 weeks-of-age, the mice were continued on the STD or placed on the STD supplemented with 5% standardized grape powder (STD5GP), a high-fat diet (HFD), or an HFD supplemented with 5% standardized grape powder (HFD5GP). After being provided with the respective diets for 13 additional weeks, the mice were euthanized, and liver was collected for biomarker analysis, determination of genetic expression (RNA-Seq), and histopathological examination. All four dietary groups demonstrated unique genetic expression patterns. Using pathway analysis tools (GO, KEGG and Reactome), relative to the STD group, differentially expressed genes of the STD5GP group were significantly enriched in RNA, mitochondria, and protein translation related pathways, as well as drug metabolism, glutathione, detoxification, and oxidative stress associated pathways. The expression of Gstp1 was confirmed to be upregulated by about five-fold (RT-qPCR), and, based on RNA-Seq data, the expression of additional genes associated with the reduction of oxidative stress and detoxification (Gpx4 and 8, Gss, Gpx7, Sod1) were enhanced by dietary grape supplementation. Cluster analysis of genetic expression patterns revealed the greatest divergence between the HFD5GP and HFD groups. In the HFD5GP group, relative to the HFD group, 14 genes responsible for the metabolism, transportation, hydrolysis, and sequestration of fatty acids were upregulated. Conversely, genes responsible for lipid content and cholesterol synthesis (Plin4, Acaa1b, Slc27a1) were downregulated. The two top classifications emerging as enriched in the HFD5GP group vs. the HFD group (KEGG pathway analysis) were Alzheimer's disease and nonalcoholic fatty liver disease (NAFLD), both of which have been reported in the literature to bear a causal relationship. In the current study, nonalcoholic steatohepatitis was indicated by histological observations that revealed archetype markers of fatty liver induced by the HFD. The adverse response was diminished by grape intervention. In addition to these studies, life-long survival was assessed with C57BL/6J mice. C57BL/6J mice were received at four-weeks-of-age and placed on the STD. At 14-weeks-of-age, the mice were divided into two groups (100 per group) and provided with the HFD or the HFD5GP. Relative to the HFD group, the survival time of the HFD5GP group was enhanced (log-rank test, p = 0.036). The respective hazard ratios were 0.715 (HFD5GP) and 1.397 (HFD). Greater body weight positively correlated with longevity; the highest body weight of the HFD5GP group was attained later in life than the HFD group (p = 0.141). These results suggest the potential of dietary grapes to modulate hepatic gene expression, prevent oxidative damage, induce fatty acid metabolism, ameliorate NAFLD, and increase longevity when co-administered with a high-fat diet.

14.
Food Funct ; 13(16): 8489-8499, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876245

RESUMO

The benefits of fruit and vegetable dietary consumption are largely defined in epidemiological terms. Relatively little is known about the discrete effects on metabolic pathways elicited by individual dietary fruits and vegetables. To address this, grape powder was added to both a standard and a high-fat Western pattern diet given to 10-week-old female C57BL/6J mice for a period of 91 days, whereupon 24 h urines were collected and the mice euthanized after a 12 h fast for the collection of liver tissue. Alterations in hepatic and urinary metabolite patterns were determined by gas chromatography-mass spectrometry-based metabolomics. Urinary excretion of the gut microbiota metabolites 4-hydroxyphenylacetic acid, 5-hydroxyindole, glyceric acid, gluconic acid and myo-inositol was attenuated when grape was added to the standard diet but the gut microbiota metabolites gluconic acid, scyllo-inositol, mannitol, xylitol, 5-hydroxyindole and 2-deoxyribonic acid were increased in urine when grape was added to the high-fat diet. Increased hepatic ascorbic acid and 5-oxoproline levels indicated the anti-oxidant effect of grape powder on the liver. Pathway enrichment analysis demonstrated that for both standard and high-fat diets, grape addition significantly upregulated the malate-aspartate shuttle indicating enhanced hepatic utilization of glucose via cytosolic glycolysis for mitochondrial ATP production. It is concluded that a grape diet reprogrammes gut microbiota metabolism, attenuates the hepatic oxidative stress of a high-fat diet and increases the efficiency of glucose utilization by the liver for energy production.


Assuntos
Dieta Hiperlipídica , Vitis , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Glucose/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pós/metabolismo
15.
Cancers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200553

RESUMO

The study of low-molecular-weight metabolites that exist in cells and organisms is known as metabolomics and is often conducted using mass spectrometry laboratory platforms. Definition of oncometabolites in the context of the metabolic phenotype of cancer cells has been accomplished through metabolomics. Oncometabolites result from mutations in cancer cell genes or from hypoxia-driven enzyme promiscuity. As a result, normal metabolites accumulate in cancer cells to unusually high concentrations or, alternatively, unusual metabolites are produced. The typical oncometabolites fumarate, succinate, (2R)-hydroxyglutarate and (2S)-hydroxyglutarate inhibit 2-oxoglutarate-dependent dioxygenases, such as histone demethylases and HIF prolyl-4-hydroxylases, together with DNA cytosine demethylases. As a result of the cancer cell acquiring this new metabolic phenotype, major changes in gene transcription occur and the modification of the epigenetic landscape of the cell promotes proliferation and progression of cancers. Stabilization of HIF1α through inhibition of HIF prolyl-4-hydroxylases by oncometabolites such as fumarate and succinate leads to a pseudohypoxic state that promotes inflammation, angiogenesis and metastasis. Metabolomics has additionally been employed to define the metabolic phenotype of cancer cells and patient biofluids in the search for cancer biomarkers. These efforts have led to the uncovering of the putative oncometabolites sarcosine, glycine, lactate, kynurenine, methylglyoxal, hypotaurine and (2R,3S)-dihydroxybutanoate, for which further research is required.

16.
Sci Rep ; 11(1): 8298, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859329

RESUMO

Two 3-oxo-Δ4 fetal bile acids, 3-oxachola-4,6-dien-24-oic acid (1) and 7α-hydroxy-3-oxochol-4-en-24-oic acid (2), occur normally in the human fetus but remain elevated in neonates and children with severe cholestatic liver disease due to an autosomal recessive inborn error of metabolism affecting Δ4-3-oxo-steroid 5ß-reductase (AKR1D1). Relatively little is known about 1 and 2 in adult patients with liver disease. The chemical synthesis of 1 and 2 is therefore described and their quantitation in plasma by ultrarapid chromatography-triple quadrupole mass spectrometry. Plasma concentrations of 1 and 2 were investigated in 25 adult patients with varying degrees of liver cirrhosis with and without hepatocellular carcinoma (HCC). Highly statistically significant correlations (P < 0.0001) were found between severity of liver cirrhosis, determined by the Child-Pugh and MELD scores, with plasma 1 and 2 concentrations, both alone and combined. The presence of HCC did not influence these correlations. Plasma cholic, chenodeoxycholic, deoxycholic, lithocholic or ursodeoxycholic acids, free and as their glycine or taurine conjugates, did not correlate with Child-Pugh or MELD score when corrected for multiple comparisons. These findings demonstrate that plasma levels of fetal bile acids 3-oxachola-4,6-dien-24-oic acid and 7α-hydroxy-3-oxochol-4-en-24-oic acid and likely deteriorating AKR1D1 activity indicate the severity of liver cirrhosis measured by the Child-Pugh and MELD scores.


Assuntos
Ácidos e Sais Biliares/sangue , Cirrose Hepática/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Carcinoma Hepatocelular/complicações , Feminino , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/complicações , Masculino , Pessoa de Meia-Idade , Oxirredutases/metabolismo , Índice de Gravidade de Doença
18.
Toxicol Ind Health ; 26(9): 601-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20542926

RESUMO

In this study, the comet assay was used to evaluate whether welding fume and solvent base paint exposure led to DNA damage in construction-site workers in Turkey. The workers (n = 52) were selected according to their exposure in the construction site and controls (n = 26) from the general population, with no history of occupational exposure. The alkaline comet assay, a standard method for assessing genotoxicity, has been applied in peripheral lymphocytes of all subjects. The mean percentages of DNA in tail (%DNA(T)) of each group were evaluated, including the comparisons between smokers in each different group and the duration of exposure. Significant increase in the mean %DNA(T) (p < 0.01) was observed in all exposed subjects (12.34 ± 2.05) when compared with controls (6.64 ± 1.43). Also %DNA(T) was significantly high (p < 0.01) in welders (13.59 ± 1.89) compared with painters (11.10 ± 1.35). There was a statistical meaningful difference in % DNA(T) between control and exposed smokers. Our findings indicate that exposure to welding fumes and paints induce genotoxic effect in peripheral lymphocytes, indicating a potential health risk for workers. Therefore, to ensure maximum occupational safety, biomonitoring is of great value for assessing the risk for construction workers.


Assuntos
Ensaio Cometa , Dano ao DNA , Exposição Ocupacional/efeitos adversos , Pintura/intoxicação , Soldagem , Adulto , Idoso , Análise de Variância , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Intoxicação por Gás/etiologia , Intoxicação por Gás/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fumar , Solventes/intoxicação , Estatísticas não Paramétricas , Turquia
19.
Biochem Pharmacol ; 180: 114171, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710968

RESUMO

The human population is burdened by morbidity and mortality from liver diseases that largely arise due to hepatitis virus infection, alcohol abuse, obesity, and diabetes. Despite 2 million global deaths per annum from liver disease, the number of drugs approved by the U.S. Food and Drug Administration (FDA) for the treatment of these disorders is sparse. Eastern medicine embodies a millennia long tradition in the use of natural product remedies for liver disease, which has attracted the interest of western medical practitioners and patients alike. Questions remain regarding the safety, efficacy, and quality of such natural products in a western medical context. Of particular concern is whether or not the mechanism of action of the product is known and, if the remedy has multiple natural constituents, how these interact at a biochemical, physiological, and clinical level. In this Commentary, we have examined the potential of metabolomics to help answer these queries, illustrated by investigations of yin chen hao tang, silymarin, and xiaozhang tie. In all cases, unique understandings of the mechanism of action of these natural products was obtained through metabolomic investigations in animal models, cell culture systems, and in clinical studies. Such mechanistic insights help assure the safety and efficacy of these natural product therapies.


Assuntos
Produtos Biológicos/metabolismo , Produtos Biológicos/uso terapêutico , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , Metabolômica/métodos , Animais , Humanos , Medicina Tradicional Chinesa/métodos , Medicina Tradicional Chinesa/tendências , Metabolômica/tendências , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico
20.
Metabolites ; 10(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012846

RESUMO

In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa