Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 34(8): 915-927, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32270361

RESUMO

Insulin aggregation is the leading cause of considerable reduction in the amount of active drug molecules in liquid formulations manufactured for diabetes management. Phenolic compounds, such as phenol and m-cresol, are routinely used to stabilize insulin in a hexameric form during its commercial preparation. However, long term usage of commercial insulin results in various adverse secondary responses, for which toxicity of the phenolic excipients is primarily responsible. In this study we aimed to find out a nontoxic insulin stabilizer. To that end, we have selected resveratrol, a natural polyphenol, as a prospective nontoxic insulin stabilizer because of its structural similarity with commercially used phenolic compounds. Atomic force microscopy visualization of resveratrol-treated human insulin revealed that resveratrol has a unique ability to arrest hINS in a soluble oligomeric form having discrete spherical morphology. Most importantly, resveratrol-treated insulin is nontoxic for HepG2 cells and it effectively maintains low blood glucose in a mouse model. Cryo-electron microscopy revealed 3D morphology of resveratrol-stabilized insulin that strikingly resembles crystal structures of insulin hexamer formulated with m-cresol. Significantly, we found that, in a condition inductive to amyloid fibrillation at physiological pH, resveratrol is capable of stabilizing insulin more efficiently than m-cresol. Thus, this study describes resveratrol as an effective nontoxic natural molecule that can be used for stabilizing insulin in a bioactive oligomeric form during its commercial formulation.


Assuntos
Excipientes/química , Insulina/química , Insulina/farmacocinética , Resveratrol/química , Animais , Varredura Diferencial de Calorimetria , Microscopia Crioeletrônica , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Difusão Dinâmica da Luz , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estabilidade Proteica
2.
Biochem Biophys Res Commun ; 469(4): 923-9, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26723252

RESUMO

It has been shown by several groups that ribosome can assist folding of denatured protein in vitro and the process is conserved across the species. Domain V of large ribosomal rRNA which occupies the intersubunit side of the large subunit was identified as the key player responsible for chaperoning the folding process. Thus, it is conceivable that denatured protein needs to access the intersubunit space of the ribosome in order to get folded. In this study, we have investigated the mechanism of release of the protein from the eukaryotic ribosome following reactivation. We have observed significant splitting of yeast 80S ribosome when incubated with the denatured BCAII protein. Energy-free disassembly mechanism functions in low Mg(+2) ion concentration for prokaryotic ribosomes. Eukaryotic ribosomes do not show significant splitting even at low Mg(+2) ion concentration. In this respect, denatured protein-induced disassembly of eukaryotic ribosome without the involvement of any external energy source is intriguing. For prokaryotic ribosomes, it was reported that the denatured protein induces ribosome splitting into subunits in order to access domain V-rRNA. In contrast, our results suggest an alternative mechanism for eukaryotic ribosomal rRNA-mediated protein folding and subsequent separation of the subunits by which release of the activated-protein occurs.


Assuntos
Proteínas Ribossômicas/química , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sítios de Ligação , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Subunidades Proteicas
3.
iScience ; 24(2): 102044, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33532719

RESUMO

Cellular factories engage numerous highly complex "molecular machines" to perform pivotal biological functions. 3D structural visualization is an effective way to understand the functional mechanisms of these biomacromolecules. The "resolution revolution" has established cryogenic electron microscopy (cryo-EM) as a preferred structural biology tool. In parallel with the advances in cryo-EM methodologies aiming at atomic resolution, several innovative approaches have started emerging where other techniques are sensibly integrated with cryo-EM to obtain additional insights into the biological processes. For example, combining the time-resolved technique with high-resolution cryo-EM enables discerning structures of short-lived intermediates in the functional pathway of a biomolecule. Likewise, integrating mass spectrometry (MS) techniques with cryo-EM allows deciphering structural organizations of large molecular assemblies. Here, we discuss how the data generated upon combining either time resolve or MS techniques with cryo-EM supplement structural elucidations with in-depth understanding of the function of cellular macromolecules when they participate in fundamental biological processes.

4.
Structure ; 29(7): 755-767.e4, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33761323

RESUMO

Bacterial co-translational N-terminal methionine excision, an early event of nascent polypeptide chain processing, is mediated by two enzymes: peptide deformylase (PDF) and methionine aminopeptidase (MetAP). Trigger factor (TF), the only ribosome-associated bacterial chaperone, offers co-translational chaperoning assistance. Here, we present two high-resolution cryoelectron microscopy structures of tRNA-bound E. coli ribosome complexes showing simultaneous binding of PDF and TF, in the absence (3.4 Å) and presence of MetAP (4.1 Å). These structures establish molecular details of the interactions of the factors with the ribosome, and thereby reveal the structural basis of nascent chain processing. Our results suggest that simultaneous binding of all three factors is not a functionally favorable mechanism of nascent chain processing. Strikingly, an unusual structural distortion of the 70S ribosome, potentially driven by binding of multiple copies of MetAP, is observed when MetAP is incubated with a pre-formed PDF-TF-bound ribosome complex.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química , Amidoidrolases/química , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Modelos Moleculares , Complexos Multiproteicos/química , Peptidilprolil Isomerase/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química
5.
J Mol Biol ; 431(7): 1426-1439, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30753870

RESUMO

During protein biosynthesis in bacteria, one of the earliest events that a nascent polypeptide chain goes through is the co-translational enzymatic processing. The event includes two enzymatic pathways: deformylation of the N-terminal methionine by the enzyme peptide deformylase (PDF), followed by methionine excision catalyzed by methionine aminopeptidase (MetAP). During the enzymatic processing, the emerging nascent protein likely remains shielded by the ribosome-associated chaperone trigger factor. The ribosome tunnel exit serves as a stage for recruiting proteins involved in maturation processes of the nascent chain. Co-translational processing of nascent chains is a critical step for subsequent folding and functioning of mature proteins. Here, we present cryo-electron microscopy structures of Escherichia coli (E. coli) ribosome in complex with the nascent chain processing proteins. The structures reveal overlapping binding sites for PDF and MetAP when they bind individually at the tunnel exit site, where L22-L32 protein region provides primary anchoring sites for both proteins. In the absence of PDF, trigger factor can access ribosomal tunnel exit when MetAP occupies its primary binding site. Interestingly, however, in the presence of PDF, when MetAP's primary binding site is already engaged, MetAP has a remarkable ability to occupy an alternative binding site adjacent to PDF. Our study, thus, discloses an unexpected mechanism that MetAP adopts for context-specific ribosome association.


Assuntos
Aminopeptidases/química , Microscopia Crioeletrônica/métodos , Metaloendopeptidases/química , Biossíntese de Proteínas , Modificação Traducional de Proteínas , Ribossomos/química , Amidoidrolases , Aminopeptidases/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metaloendopeptidases/metabolismo , Metionina , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Ribossomos/metabolismo
6.
PLoS One ; 11(4): e0153928, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27099964

RESUMO

In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.


Assuntos
Anidrase Carbônica II/metabolismo , Eucariotos/metabolismo , RNA Ribossômico/genética , Ribossomos/metabolismo , Animais , Sítios de Ligação/genética , Bovinos , Eucariotos/genética , Leishmania donovani/genética , Leishmania donovani/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Desnaturação Proteica , Dobramento de Proteína , Ribossomos/genética
7.
Sci Rep ; 6: 19936, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822933

RESUMO

It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome.


Assuntos
Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ribossomos/metabolismo , Álcool Desidrogenase/química , Aldeído Oxirredutases/química , Sítios de Ligação , Proteínas de Escherichia coli/química , Modelos Moleculares , Porinas/química , Porinas/metabolismo , Ligação Proteica , Conformação Proteica , Ribossomos/química , Ribossomos/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa