Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(6): 2950-3006, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36802557

RESUMO

The net rate of a reversible chemical reaction is the difference between unidirectional rates of traversal along forward and reverse reaction paths. In a multistep reaction sequence, the forward and reverse trajectories, in general, are not the microscopic reverse of one another; rather, each unidirectional route is comprised of distinct rate-controlling steps, intermediates, and transition states. Consequently, traditional descriptors of rate (e.g., reaction orders) do not reflect intrinsic kinetic information but instead conflate unidirectional contributions determined by (i) the microscopic occurrence of forward/reverse reactions (i.e., unidirectional kinetics) and (ii) the reversibility of reaction (i.e., nonequilibrium thermodynamics). This review aims to provide a comprehensive resource of analytical and conceptual tools which deconvolute the contributions of reaction kinetics and thermodynamics to disambiguate unidirectional reaction trajectories and precisely identify rate- and reversibility-controlling molecular species and steps in reversible reaction systems. The extrication of mechanistic and kinetic information from bidirectional reactions is accomplished through equation-based formalisms (e.g., De Donder relations) grounded in principles of thermodynamics and interpreted in the context of theories of chemical kinetics developed in the past 25 years. The aggregate of mathematical formalisms detailed herein is general to thermochemical and electrochemical reactions and encapsulates a diverse body of scientific literature encompassing chemical physics, thermodynamics, chemical kinetics, catalysis, and kinetic modeling.

2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33608461

RESUMO

We demonstrate that the Langmuir-Hinshelwood formalism is an incomplete kinetic description and, in particular, that the Hinshelwood assumption (i.e., that adsorbates are randomly distributed on the surface) is inappropriate even in catalytic reactions as simple as A + A → A2 The Hinshelwood assumption results in miscounting of site pairs (e.g., A*-A*) and, consequently, in erroneous rates, reaction orders, and identification of rate-determining steps. The clustering and isolation of surface species unnoticed by the Langmuir-Hinshelwood model is rigorously accounted for by derivation of higher-order rate terms containing statistical factors specific to each site ensemble. Ensemble-specific statistical rate terms arise irrespective of and couple with lateral adsorbate interactions, are distinct for each elementary step including surface diffusion events (e.g., A* + * → * + A*), and provide physical insight obscured by the nonanalytical nature of the kinetic Monte Carlo (kMC) method-with which the higher-order formalism quantitatively agrees. The limitations of the Langmuir-Hinshelwood model are attributed to the incorrect assertion that the rate of an elementary step is the same with respect to each site ensemble. In actuality, each elementary step-including adsorbate diffusion-traverses through each ensemble with unique rate, reversibility, and kinetic-relevance to the overall reaction rate. Explicit kinetic description of ensemble-specific paths is key to the improvements of the higher-order formalism; enables quantification of ensemble-specific rate, reversibility, and degree of rate control of surface diffusion; and reveals that a single elementary step can, counter intuitively, be both equilibrated and rate determining.

3.
J Am Chem Soc ; 145(6): 3408-3418, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724435

RESUMO

A mixed-valence oxotrimer metal-organic framework (MOF), Ni-MIL-127, with a fully coordinated nickel atom and two iron atoms in the inorganic node, generates a missing linker defect upon thermal treatment in helium (>473 K) to engender an open coordination site on nickel which catalyzes propylene oligomerization devoid of any cocatalysts or initiators. This catalyst is stable for ∼20 h on stream at 500 kPa and 473 K, unprecedented for this chemistry. The number of missing linkers on synthesized and activated Ni-MIL-127 MOFs is quantified using temperature-programmed oxidation, 1H nuclear magnetic resonance spectroscopy, and X-ray absorption spectroscopy to be ∼0.7 missing linkers per nickel; thus, a majority of Ni species in the MOF framework catalyze propylene oligomerization. In situ NO titrations under reaction conditions enumerate ∼62% of the nickel atoms as catalytically relevant to validate the defect density upon thermal treatment. Propylene oligomerization rates on Ni-MIL-127 measured at steady state have activation energies of 55-67 kJ mol-1 from 448 to 493 K and are first-order in propylene pressures from 5 to 550 kPa. Density functional theory calculations on cluster models of Ni-MIL-127 are employed to validate the plausibility of the missing linker defect and the Cossee-Arlman mechanism for propylene oligomerization through comparisons between apparent activation energies from steady-state kinetics and computation. This study illustrates how MOF precatalysts engender defective Ni species which exhibit reactivity and stability characteristics that are distinct and can be engineered to improve catalytic activity for olefin oligomerization.

4.
J Am Chem Soc ; 144(21): 9324-9329, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580033

RESUMO

Low-silica faujasite (FAU) zeolites (with Si/Al ratio of ca. 1.2-1.8) sustain framework integrity and porosity upon moderate ion exchange (0.01 M NH4NO3 solution for 1 h at ambient temperature), which introduces two kinds of protons, distinctive in reactivity and coordination to the zeolite framework, within supercages (HSUP). Moderate ion exchange limited within supercages transpires while maintaining full occupancy of Na+ cations within associated sodalite cages; this in turn helps stabilize the framework of low-silica H-FAU zeolites. Protons located on site II (H3630) and site III (H3650) within supercages on low-silica FAU zeolites can be classified and enumerated by virtue of infrared spectroscopy, providing an opportunity to compare reactivities of these distinct protons for monomolecular protolytic reactions of propane. Protons on site II exhibit prominently higher reactivity for monomolecular propane dehydrogenation and cracking than protons on site III. Low-silica proton-form FAU zeolites (zeolite X) upon moderate ion exchange possess protons on site III that are unavailable on high-silica FAU zeolites (zeolite Y) and limit ion exchange within supercages, providing unprecedented high-temperature structural and chemical stability (>773 K) and enabling their application as solid-acid catalysts.

5.
Angew Chem Int Ed Engl ; 61(5): e202111180, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34767296

RESUMO

Faujasite (FAU) zeolites (with Si/Al ratio of ca. 1.7) undergo mild dealumination at moderate ion exchange conditions (0.01 to 0.6 M of NH4 NO3 solutions) resulting in protons circumscribed by sodalite cages becoming accessible for reaction without conspicuous changes to bulk crystallinity. The ratio of protons in sodalite cages (HSOD ) to supercages (HSUP ) can be systematically manipulated from 0 to ca. 1 by adjusting ammonium concentrations used in ion exchange. The fraction of accessible protons in the sodalite cages is assessed by virtue of infrared spectra for H-D exchange of deuterated propane based on the band area ratio of OD2620 /OD2680 (ODSOD /ODSUP ). Protons in sodalite cages (HSOD ) show higher rate constants of propane dehydrogenation (kD ) and cracking (kC ) than protons in supercages (HSUP ) plausibly due to confinement effects being more prominent in smaller voids. Rate constants of dehydrogenation and cracking including kD /kC ratios are also augmented as the fraction of accessible protons in the sodalite cages is enhanced. These effects of accessibility and reactivity of protons in sodalite cages hitherto inconspicuous are revealed herein via methods that systematically increase accessibility of cations located in sodalite cages.

6.
J Am Chem Soc ; 143(31): 12165-12174, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314584

RESUMO

Recent work has exploited the ability of metal-organic frameworks (MOFs) to isolate Fe sites that mimic the structures of sites in enzymes that catalyze selective oxidations at low temperatures, opening new pathways for the valorization of underutilized feedstocks such as methane. Questions remain as to whether the radical-rebound mechanism commonly invoked in enzymatic and homogeneous systems also applies in these rigid-framework materials, in which resisting the overoxidation of desired products is a major challenge. We demonstrate that MOFs bearing Fe(II) sites within Fe3-µ3-oxo nodes active for conversion of CH4 + N2O mixtures (368-408 K) require steps beyond the radical-rebound mechanism to protect the desired CH3OH product. Infrared spectra and density functional theory show that CH3OH(g) is stabilized as Fe(III)-OCH3 groups on the MOF via hydrogen atom transfer with Fe(III)-OH groups, eliminating water. Consequently, upon addition of a protonic zeolite in inter- and intrapellet mixtures with the MOF, we observed increases in CH3OH selectivity with increasing ratio and proximity of zeolitic H+ to MOF-based Fe(II) sites, as methanol is protected within the zeolite. We infer from the data that CH3OH(g) is formed via the radical-rebound mechanism on Fe(II) sites but that subsequent transport and dehydration steps are required to protect CH3OH(g) from overoxidation. The results demonstrate that the radical-rebound mechanism commonly invoked in this chemistry is insufficient to explain the reactivity of these systems, that the selectivity-controlling steps involve both chemical and physical rate phenomena, as well as offering a strategy to mitigate overoxidation in these and similar systems.

7.
J Am Chem Soc ; 143(48): 20274-20280, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817993

RESUMO

Nickel-functionalized UiO-66 metal organic frameworks (MOFs) oligomerize ethylene in the absence of cocatalysts or initiators after undergoing ethylene-pressure-dependent transients and maintain stable oligomerization rates for >15 days on stream. Higher ethylene pressures shorten induction periods and engender more active sites for ethylene oligomerization; these sites exhibit invariant selectivity-conversion characteristics to justify that only one type of catalytic center is relevant for oligomerization. The number of active sites is estimated using in situ NO titration to disambiguate the effect of increased reaction rates upon exposure to increasing ethylene pressures. After accounting for augmented site densities with increasing ethylene pressures, ethylene oligomerization is first order in ethylene pressure from 100 to 1800 kPa with an activation energy of 81 kJ mol-1 at temperatures from 443-503 K on Ni/UiO-66. A representative Ni/UiO-66 cluster model that mimics high ethylene pressure process conditions is validated with ab initio thermodynamic analysis, and the Cossee-Arlman mechanism is posited based on comparisons between experimental and computed activation enthalpies from density functional theory calculations on these cluster models of Ni/UiO-66. The insights gained from experiment and theory help rationalize evolution in structure and stability for ethylene oligomerization Ni/UiO-66 MOF catalysts.

8.
Acc Chem Res ; 52(9): 2647-2656, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31403774

RESUMO

Solid catalysts deployed in industrial processes often undergo deactivation, requiring frequent replacement or regeneration to recover the loss in activity. Regeneration occurs under conditions distinct from, and typically more harsh than, the catalysis, placing strict requirements on physicochemical material properties that divert catalyst optimization toward addressing regenerability over high activity and selectivity. Deactivation arises from mechanical, structural, or chemical modifications to active sites, promoters, and their surrounding matrices, and the prevailing mechanism for deactivation varies with the reaction, the catalyst, and the reaction conditions. Methanol-to-hydrocarbons processes utilize zeolites and zeotypes-crystalline, microporous oxides widely deployed as catalysts in the refining and petrochemical industries-as solid acid catalysts. Deposition and growth of highly unsaturated carbonaceous residues within the micropores congest molecular transport and block active sites, resulting in deactivation. In this Account, we describe studies probing the underlying mechanisms of deactivation in methanol-to-hydrocarbons catalysis and discuss examples of leveraging the acquired mechanistic insights to mitigate deactivation and prolong catalyst lifetime. These fundamental principles governing carbon deposition within zeolites and zeotypes provide opportunity to broaden versatility of processes for C1 valorization and to relax constraints imposed by hydrothermal catalyst stability considerations to achieve more active and more selective catalysis. Methanol-to-hydrocarbons catalysis occurs via a chain carrier mechanism. A zeolite/zeotype cavity hosts an unsaturated hydrocarbon guest to together constitute the supramolecular chain carrier that engages in a complex network of reactions for chain carrier propagation. Productive propagation reactions include olefin methylation, aromatic methylation, and aromatic dealkylation. Methanol undergoes unproductive dehydrogenation to formaldehyde via methanol disproportionation and olefin transfer hydrogenation. Subsequent alkylation reactions between formaldehyde and active olefinic/aromatic cocatalysts instigate cascades for dehydrocyclization, resulting in the formation of inactive polycyclic aromatic hydrocarbons and termination of the chain carrier. Addition of a distinct catalytic function that selectively decomposes formaldehyde mitigates chain carrier termination without disrupting the high selectivity to ethylene and propylene in methanol-to-hydrocarbons catalysis on small-pore zeolites and zeotypes. The efficacy of this bifunctional strategy to prolong catalyst lifetime increases with increasing proximity between the active sites for formaldehyde decomposition and the H+ sites of the zeolite/zeotype. Coprocessing sacrifical hydrogen donors mitigates chain carrier termination by intercepting, via saturation, intermediates along dehydrocyclization cascades. This strategy increases in efficacy with increasing concentration of the hydrogen donor and provides opportunity to realize steady-state methanol-to-hydrocarbons catalysis on small-pore zeolites and zeotypes.

9.
J Am Chem Soc ; 141(45): 18142-18151, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31670511

RESUMO

Metal organic frameworks (MOFs), with their crystalline, porous structures, can be synthesized to incorporate a wide range of catalytically active metals in tailored surroundings. These materials have potential as catalysts for conversion of light alkanes, feedstocks available in large quantities from shale gas that are changing the economics of manufacturing commodity chemicals. Mononuclear high-spin (S = 2) Fe(II) sites situated in the nodes of the MOF MIL-100(Fe) convert propane via dehydrogenation, hydroxylation, and overoxidation pathways in reactions with the atomic oxidant N2O. Pair distribution function analysis, N2 adsorption isotherms, X-ray diffraction patterns, and infrared and Raman spectra confirm the single-phase crystallinity and stability of MIL-100(Fe) under reaction conditions (523 K in vacuo, 378-408 K C3H8 + N2O). Density functional theory (DFT) calculations illustrate a reaction mechanism for the formation of 2-propanol, propylene, and 1-propanol involving the oxidation of Fe(II) to Fe(III) via a high-spin Fe(IV)═O intermediate. The speciation of Fe(II) and Fe(III) in the nodes and their dynamic interchange was characterized by in situ X-ray absorption spectroscopy and ex situ Mössbauer spectroscopy. The catalytic relevance of Fe(II) sites and the number of such sites were determined using in situ chemical titrations with NO. N2 and C3H6 production rates were found to be first-order in N2O partial pressure and zero-order in C3H8 partial pressure, consistent with DFT calculations that predict the reaction of Fe(II) with N2O to be rate determining. DFT calculations using a broken symmetry method show that Fe-trimer nodes affecting reaction contain antiferromagnetically coupled iron species, and  highlight the importance of stabilizing high-spin (S = 2) Fe(II) species for effecting alkane oxidation at low temperatures (<408 K).

10.
Metab Eng ; 49: 84-93, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031851

RESUMO

This paper describes how Rule Input Network Generator (RING), a network generation computational tool, can be adopted to generate a variety of complex biochemical reaction networks. The reaction language incorporated in RING allows representation of chemical compounds in biological systems with various structural complexity. Complex molecules such as oligosaccharides in glycosylation pathways can be described using a simplified representation of their monosaccharide building blocks and glycosidic bonds. The automated generation and topological network analysis features in RING also allow for: (1) constructing biochemical reaction networks in a rule-based manner, (2) generating graphical representations of the networks, (3) querying molecules containing a particular structural pattern, (4) finding the shortest synthetic pathways to a user-specified species, and (5) performing enzyme knockout to study their effect on the reaction network. Case studies involving three biochemical reaction systems: (1) Synthesis of 2-ketoglutarate from xylose in bacterial cells, (2) N-glycosylation in mammalian cells, and (3) O-glycosylation in mammalian cells are presented to demonstrate the capabilities of RING for robust and exhaustive network generation and the advantages of its post-processing features.


Assuntos
Bactérias , Metabolismo , Software , Animais , Bactérias/genética , Bactérias/metabolismo , Humanos
11.
Chemistry ; 24(47): 12405-12415, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29710392

RESUMO

The overall chloriding effectiveness factor (Z*), defined as the ratio of ethyl chloride concentration in parts per million to the sum of ethylene and ethane concentration in mole percent multiplied by a weighting factor to account for their efficacy in removing chlorine-adatoms from the surface, was used as a parameter to account for the effects of chlorine on the kinetics of ethylene epoxidation on a highly promoted 35 wt % Ag/α-Al2 O3 catalyst. An increase in O2 order (≈0.7 to 1) and a decrease in C2 H4 order (≈0.5 to <0) with increasing Z* (Z*=2.1, 3.4, 5.2, and 8.9) was observed implicating kinetic relevance of O2 activation on chloride-promoted silver catalysts. Carbon dioxide co-feed (1-5 mol %) was found to promote ethylene oxide selectivity as CO2 co-feed reversibly inhibits CO2 synthesis rates (-0.6 order) more than ethylene oxide synthesis rates (-0.49 order) at all Z* values. Ethylene oxide and CO2 rates were found to be invariant with ethylene oxide (0-0.5 mol %) and acetaldehyde (0-1.7 ppm) co-feeds, suggesting that there is minimal product inhibition under reaction conditions. A model involving a common reaction intermediate for ethylene oxide and carbon dioxide synthesis and two types of atomically adsorbed oxygen species-nucleophilic and electrophilic oxygen-is proposed to plausibly describe the observed reaction rate dependencies and selectivity trends as a function of the chloriding effectiveness.

12.
Chemphyschem ; 19(4): 479-483, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29205738

RESUMO

Seeding the hydrocarbon pool before exposure to methanol ensures the presence of active olefinic and aromatic chain carriers in the HSAPO-34 cavity before the first methanol-to-olefin turnover. The primordial hydrocarbon pool enables the introduction, at low turnover numbers, of chain propagation steps that compete with methanol transfer dehydrogenation-mediated chain termination steps, thereby increasing the fraction of converted methanol used for productive turnovers during methanol-to-olefin catalysis over HSAPO-34. Seeding the hydrocarbon pool results, concurrently, in higher light-olefin yields and lower rates of carbon loss. The increasing relative preponderance of methanol transfer dehydrogenation steps with increasing methanol pressure renders seeding more effective at higher methanol pressures. Under the conditions used in this study, seeding appears to accelerate the buildup of the hydrocarbon pool without significantly altering its composition. The results reported here outline a strategy for mitigating the deleterious effects of methanol transfer dehydrogenation reactions while reemphasizing their primacy in effecting catalyst deactivation during methanol-to-olefins conversion.

13.
Inorg Chem ; 57(5): 2782-2790, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29461822

RESUMO

Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-postmetalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

14.
Angew Chem Int Ed Engl ; 57(47): 15577-15582, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30295010

RESUMO

Addition of Zr metal particles to MoCx /ZSM-5 in interpellet mixtures (2:1 weight ratio) resulted in maximum single-pass methane conversion of 27 % for dehydroaromatization at 973 K (in significant excess of the equilibrium prescribed circa 10 % conversion at these conditions) and a concurrent 1.4-5.6-fold increase in aromatic product yields due to circumvention of thermodynamic equilibrium limitations by absorptive H2 removal by Zr while retaining cumulative aromatic product selectivity. The absorptive function of the polyfunctional catalyst formulation can be regenerated by thermal treatment in He flow at 973 K, yielding above-equilibrium methane conversion in successive regeneration cycles. H2 uptake experiments demonstrate formation of bulk ZrH1.75 on hydrogen absorption by Zr at 973 K. Cooperation between absorption and catalytic centers distinct in location and function enables circumvention of persistent thermodynamic challenges in non-oxidative methane dehydrogenation.

15.
Faraday Discuss ; 197: 9-39, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28300265

RESUMO

This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C1 and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C1 molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O2 and H2O molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH4 reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni2+ active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C1 homologation selectively forms C4 and C7 chains with a specific backbone (isobutane, triptane) on solid acids, because of methylative growth and hydride transfer rates that reflect the stability of their carbenium ion transition states and are unperturbed by side reactions at low temperatures. Aldol condensation of carbonyl compounds and ketonization of carboxylic acids form new C-C bonds concurrently with O-removal. These reactions involve analogous elementary steps and occur on acid-base site pairs on TiO2 and ZrO2 catalysts. Condensations are limited by α-H abstraction to form enolates via concerted interactions with predominantly unoccupied acid-base pairs. Ketonization is mediated instead by C-C bond formation between hydroxy-enolates and monodentate carboxylates on site pairs nearly saturated by carboxylates. Both reactions are rendered practical through bifunctional strategies, in which H2 and a Cu catalyst function scavenge unreactive intermediates, prevent sequential reactions and concomitant deactivation, and remove thermodynamic bottlenecks. Alkanal-alkene Prins condensations on solid acids occur concurrently with alkene dimerization and form molecules with new C-C bonds as skeletal isomers unattainable by other routes. Their respective transition states are of similar size, leading to selectivities that cannot sense the presence of a confining host. Prins condensation reactions benefit from weaker acid sites because their transition states are less charged than those for oligomerization and consequently less sensitive to conjugate anions that become less stable as acids weaken.

16.
Langmuir ; 29(22): 6546-55, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23635346

RESUMO

The relationship between polyol adsorption affinity and silanol defect density was investigated through the development of vapor and aqueous adsorption isotherms on silicalite-1 materials which vary in structural and surface properties. Silicalite-1 crystals prepared through alkaline synthesis, alkaline synthesis with steaming post-treatment, and fluoride synthesis routes were confirmed as crystalline mordenite framework inverted (MFI) by SEM and XRD and were shown to contain ~8.5-0 silanol defects per unit cell by (29)Si MAS, (1)H MAS, and (1)H-(29)Si CPMAS NMR. A hysteresis in the Ar 87 K adsorption isotherm at 10(-3)P/P0 evolved with a decrease in silanol defects, and, through features in the XRD and (29)Si MAS NMR spectra, it is postulated that the hysteresis is the result of an orthorhombic-monoclinic symmetry shift with decreasing silanol defect density. Gravimetric and aqueous solution measurements reveal that propylene glycol adsorption at 333 K is promoted by silanol defects, with a maximum 20-fold increase observed for aqueous adsorption at ~10(-3) g/mL with an increase from ~0 to 8.5 silanols per unit cell. A comparison of vapor and aqueous propylene glycol adsorption isotherms on defect-free silicalite-1 at 333 K, both of which exhibit the Type-V character, indicates that water enhances adsorption by a factor of ~2 in the Henry's Law regime. Henry's constants for aqueous C2-C4 polyol adsorption (concentrations below 0.004 g/mL) at 298 K are shown to have a linear dependence on the silanol defect density, demonstrating that these molecules preferentially adsorb at silanol defects at dilute concentrations. This systematic study of polyol adsorption on silicalite-1 materials highlights the critical role of defects on adsorption of hydrophilic molecules and clearly details the effects of coadsorption of water, which can guide the selection of zeolites for separation of biomass-derived oxygenates.

17.
Phys Chem Chem Phys ; 15(29): 12173-9, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23703320

RESUMO

Co-processing of formic acid or carbon dioxide with CH4 (FA/CH4 = 0.01-0.03 and CO2/CH4 = 0.01-0.03) on Mo/H-ZSM-5 catalysts at 950 K with the prospect of kinetically coupling dehydrogenation and deoxygenation cycles results instead in a two-zone, staged bed reactor configuration consisting of upstream oxygenate/CH4 reforming and downstream CH4 dehydroaromatization. The addition of an oxygenate co-feed (oxygenate/CH4 = 0.01-0.03) causes oxidation of the active molybdenum carbide catalyst while producing CO and H2 until completely converted. Forward rates of C6H6 synthesis are unaffected by the introduction of an oxygenate co-feed after rigorously accounting for the thermodynamic reversibility caused by the H2 produced in oxygenate reforming reactions and the fraction of the active catalyst deemed unavailable for CH4 DHA. All effects of co-processing oxygenates with CH4 can be construed in terms of an approach to equilibrium.


Assuntos
Dióxido de Carbono/química , Formiatos/química , Metano/química , Benzeno/síntese química , Benzeno/química , Monóxido de Carbono/química , Catálise , Hidrogênio/química , Cinética , Molibdênio/química , Oxirredução , Termodinâmica
18.
J Phys Chem C Nanomater Interfaces ; 127(48): 23246-23257, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38090139

RESUMO

High-valent Fe(IV)-oxo species derived upon reactions of N2O with Fe(II) centers-embedded in the framework of tri-iron oxo-centered-based metal-organic frameworks (MOFs)- selectively affect the conversion of benzene-to-phenol via electrophilic addition to arene C-H bonds akin to oxygen transfer mechanisms in the P450 enzyme. The Fe(II) species identified by Mössbauer spectroscopy can be titrated in situ by the addition of NO to completely suppress benzene oxidation, verifying the relevance of Fe(II) centers. Observed inverse kinetic isotope effects in benzene hydroxylation preclude the involvement of H atom transfer steps from benzene to the Fe(IV)-oxo species and instead suggest that the electrophilic iron-oxo group adds to an sp2 carbon of benzene, resulting in a change in the hybridization from sp2-to-sp3. These mechanistic postulates are affirmed in Kohn-Sham density functional calculations, which predict lower barriers for additive mechanisms for arene oxidation than H atom abstraction steps. The calculations show that the reaction proceeds on the pentadectet spin surface and that a non-innocent ligand participates in the transfer of the H atom. Following precedent literature which demonstrates that these Fe(IV)-oxo species react with C-H bonds in alkanes via hydrogen atom abstraction to form alcohols, it appears that iron(IV)-oxo species in MOFs exhibit duality in their reactions with inert hydrocarbon substrates akin to enzymes-if the C-H bonds are in saturated aliphatic hydrocarbons, then activation occurs via hydrogen abstraction, while if the C-H bonds are aromatic, then activation occurs by addition rearrangement.

19.
Nat Commun ; 14(1): 3152, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258522

RESUMO

It is shown that Machine Learning (ML) algorithms can usefully capture the effect of crystallization composition and conditions (inputs) on key microstructural characteristics (outputs) of faujasite type zeolites (structure types FAU, EMT, and their intergrowths), which are widely used zeolite catalysts and adsorbents. The utility of ML (in particular, Geometric Harmonics) toward learning input-output relationships of interest is demonstrated, and a comparison with Neural Networks and Gaussian Process Regression, as alternative approaches, is provided. Through ML, synthesis conditions were identified to enhance the Si/Al ratio of high purity FAU zeolite to the hitherto highest level (i.e., Si/Al = 3.5) achieved via direct (not seeded), and organic structure-directing-agent-free synthesis from sodium aluminosilicate sols. The analysis of the ML algorithms' results offers the insight that reduced Na2O content is key to formulating FAU materials with high Si/Al ratio. An acid catalyst prepared by partial ion exchange of the high-Si/Al-ratio FAU (Si/Al = 3.5) exhibits improved proton reactivity (as well as specific activity, per unit mass of catalyst) in propane cracking and dehydrogenation compared to the catalyst prepared from the previously reported highest Si/Al ratio (Si/Al = 2.8).

20.
Acc Chem Res ; 41(4): 559-67, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18278876

RESUMO

The extent to which spatial constraints influence rates and pathways in catalysis depends on the structure of intermediates, transition states, and active sites involved. We aim to answer, as we seek insights into catalytic mechanisms and site requirements, persistent questions about the potential for controlling rates and selectivities by rational design of spatial constraints around active sites within inorganic structures useful as catalysts. This Account addresses these matters for the specific case of reactions on zeolites that contain Brønsted acid sites encapsulated within subnanometer channels. We compare and contrast here the effects of local zeolite structure on the dynamics of the carbonylation of surface methyl groups and of the isotopic exchange of CD4 with surface OH groups on zeolites. Methyl and hydroxyl groups are the smallest monovalent cations relevant in catalysis by zeolites. Their small size, taken together with their inability to desorb except via reactions with other species, allowed us to discriminate between stabilization of cationic transition states and stabilization of adsorbed reactants and products by spatial constraints. We show that apparent effects of proton density and of zeolite channel structure on dimethyl ether carbonylation turnover rates reflect instead the remarkable specificity of eight-membered ring zeolite channels in accelerating kinetically relevant steps that form *COCH3 species via CO insertion into methyl groups. This specificity reflects the selective stabilization of cationic transition states via interactions with framework oxygen anions. These findings for carbonylation catalysts contrast sharply the weak effects of channel structure on the rate of exchange of CD4 with OH groups. This latter reaction involves concerted symmetric transition states with much lower charge than that required for CH3 carbonylation. Our Account extends the scope of shape selectivity concepts beyond those reflecting size exclusion and preferential adsorption. Our ability to discriminate among various effects of spatial constraints depends critically on dissecting chemical conversions into elementary steps of kinetic relevance and on eliminating secondary reactions and accounting for the concomitant effects of zeolite structure on the stability of adsorbed reactants and intermediates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa