Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34771092

RESUMO

Citrus species of plants are among the most commercially cultivated crops, mainly for their fruit. Besides, the generally consumed flesh inside the fruit, the peel is quite important too. Essential oils extracted from the peel have a history of being used by humankind for centuries. These essential oils are rich in antioxidants and antimicrobial agents. Comparative investigation of volatile constituents, and antioxidant and antimicrobial activities were undertaken. The essential oils were evaluated through gas chromatography-mass spectrometry (GC-MS), and enantiomeric composition by chiral GC-MS. Similarly, the antioxidant properties were evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and antimicrobial activities were assayed using the disk diffusion method. The highest extraction yield of 1.83% was observed in Citrus sinensis Osbeck. GC-MS analysis showed limonene (63.76-89.15%), γ-terpinene (0.24-6.43%), ß-pinene (0.15-6.09%), linalool (0.35-3.5%), sabinene (0.77-2.17%), myrcene (0.74-1.75%), α-terpineol (0.28-1.15%), and α-pinene (0.2-0.58%) as the major constituents of the essential oil of the Citrus species studied. For the first time, through our study, chiral terpenoids have been observed from Citrus grandis Osbeck essential oil. The order of antioxidant activity is as follows: Citrus grandis Osbeck red flesh > Citrus reticulata Blanco > Citrus sinensis Osbeck > Citrus grandis Osbeck white flesh. Except for Citrus grandis Osbeck white flesh (52.34 µL/mL), all samples demonstrated stronger antioxidant activities than those of the positive control, quercetin (5.60 µL/mL). Therefore, these essential oils can be used as a safe natural antioxidant to prevent product oxidation. Likewise, citrus peel essential oil showed antimicrobial activity against tested bacterial strains, albeit marginal.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Citrus/química , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nepal , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
2.
Nanomaterials (Basel) ; 12(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080103

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa