Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 872: 162213, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36796691

RESUMO

Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.


Assuntos
Biofilmes , Águas Residuárias , Humanos , Matriz Extracelular de Substâncias Poliméricas , Percepção de Quorum , Interações Microbianas , Esgotos , Reatores Biológicos
2.
Bioresour Technol ; 386: 129471, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453660

RESUMO

A Continuously Stirred Tank Anaerobic Granular Reactor seeded with mesophilic biomass was studied for 1733 days analysing the impact of seasonal (12-23 °C) and controlled (8-15 °C) low temperatures on anaerobic treatment of sewage. Aided by intermittent dosing of 0.04% (v/v) methanol, the microbiota quickly adapted to temperature fluctuations. Chemical oxygen demand (COD) removal efficiency was high but low temperatures affected methane production. Under low-temperature stress, the Methanomythylovorans and Methanosaeta-dominated methanogenic community shifted focus to cellular repair and transport, with carbon diversion towards assimilative pathways, thereby decreasing methane yields. Specific methanogenic activity at 15 °C and 30 °C increased by five and four times, respectively, from their initial values indicating microbiota retained its mesophilic properties. Despite lower methane yield, stable and high COD removals, along with low dissolved methane and volatile fatty acids indicated that low-temperature anaerobic sewage treatment using mesophilic biomass in the long run is sustainable.


Assuntos
Euryarchaeota , Esgotos , Temperatura , Anaerobiose , Reatores Biológicos , Biomassa , Estações do Ano , Metano/análise
3.
J Biomol Struct Dyn ; 40(9): 4038-4050, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33305701

RESUMO

Sickle cell disease (SCD) is a major medical problem in which mono-therapeutic interventions have so far shown only limited effectiveness. We studied the repurpose of genistein, which could prevent sickle hemoglobin from polymerizing under hypoxic conditions in this disease. Genistein an important nutraceutical molecule found in soybean. The present study examines the repurposing genistein as an anti- sickling agent. Genistein shows inhibition of Hb S polymerization as well as a sickle reversal. Also, we have explored the interaction of the genistein with sickle hemoglobin (Hb S), using fluorescence, far-UV-CD spectroscopy, MicroScale Thermophoresis (MST), FTIR, combined with molecular modeling computations. The quenching constant decreases with increasing temperature, a characteristic that coincides with the static type of quenching mechanism. Temperature-dependent fluorescence measurements and molecular modeling studies reveal that apart from the hydrogen bonding, electrostatic interactions also play a crucial role in genistein and Hb S complex formation. In silico, distribution prediction of adsorption, digestion, metabolism, excretion, and toxicity (ADME/Tox) based on physical and chemical properties show that genistein is nontoxic and has ideal drug properties. The helicity and thermophoretic mobility of Hb S was a change in the presence of genistein, which leads to the destabilizing the Hb S polymer was examined using CD and MST, respectively. Our results open up the possibility for a promising therapeutic approach for the SCD by repurposed genistein as an anti-sickling agent.Communicated by Ramaswamy H. Sarma.


Assuntos
Anemia Falciforme , Hemoglobina Falciforme , Anemia Falciforme/tratamento farmacológico , Reposicionamento de Medicamentos , Genisteína/farmacologia , Hemoglobina Falciforme/química , Humanos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa