Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853277

RESUMO

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Assuntos
Antígenos CD55 , Núcleo Celular , Cromatina , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Histonas , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Feminino , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Antígenos CD55/metabolismo , Antígenos CD55/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilação , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Transporte Proteico
2.
Br J Cancer ; 118(11): 1442-1452, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695771

RESUMO

BACKGROUND: Monoamine oxidases (MAO) are mitochondrial enzymes functioning in oxidative metabolism of monoamines. The action of MAO-A has been typically described in neuro-pharmacological domains. Here, we have established a co-relation between IL-6/IL-6R and MAO-A and their regulation in hypoxia induced invasion/angiogenesis. METHODS: We employed various in-vitro and in-vivo techniques and clinical samples. RESULTS: We studied a co-relation among MAO-A and IL-6/IL-6R and tumour angiogenesis/invasion in hypoxic environment in breast cancer model. Activation of IL-6/IL-6R and its downstream was found in hypoxic cancer cells. This elevation of IL-6/IL-6R caused sustained inhibition of MAO-A in hypoxic environment. Inhibition of IL-6R signalling or IL-6R siRNA increased MAO-A activity and inhibited tumour angiogenesis and invasion significantly in different models. Further, elevation of MAO-A with 5-azacytidine (5-Aza) modulated IL-6 mediated angiogenesis and invasive signatures including VEGF, MMPs and EMT in hypoxic breast cancer. High grade invasive ductal carcinoma (IDC) clinical specimen displayed elevated level of IL-6R and depleted MAO-A expression. Expression of VEGF and HIF-1α was unregulated and loss of E-Cadherin was observed in high grade IDC tissue specimen. CONCLUSIONS: Suppression of MAO-A by IL-6/IL-6R activation promotes tumour angiogenesis and invasion in hypoxic breast cancer environment.


Assuntos
Neoplasias da Mama/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-6/metabolismo , Monoaminoxidase/metabolismo , Receptores de Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígenos CD/metabolismo , Azacitidina/farmacologia , Neoplasias da Mama/irrigação sanguínea , Caderinas/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Embrião de Galinha , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Biológicos , Invasividade Neoplásica
4.
Tumour Biol ; 36(12): 9829-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26159854

RESUMO

Despite the recent advances in diagnostic and therapeutic strategies, oral squamous cell carcinoma (OSCC) remains a major health burden. Protein biomarker discovery for early detection will help to improve patient survival rate in OSCC. Mass spectrometry-based proteomics has emerged as an excellent approach for detection of protein biomarkers in various types of cancers. In the current study, we have used 4-Plex isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun quantitative proteomic approach to identify proteins that are differentially expressed in cancerous tissues compared to normal tissues. The high-resolution mass spectrometric analysis resulted in identifying 2,074 proteins, among which 288 proteins were differentially expressed. Further, it was noticed that 162 proteins were upregulated, while 125 proteins were downregulated in OSCC-derived cancer tissue samples as compared to the adjacent normal tissues. We identified some of the known molecules which were reported earlier in OSCC such as MMP-9 (8.4-fold), ZNF142 (5.6-fold), and S100A7 (3.5-fold). Apart from this, we have also identified some novel signature proteins which have not been reported earlier in OSCC including ras-related protein Rab-2A isoform, RAB2A (4.6-fold), and peroxiredoxin-1, PRDX1 (2.2-fold). The immunohistochemistry-based validation using tissue microarray slides in OSCC revealed overexpression of the RAB2A and PRDX1 gene in 80 and 68 % of the tested clinical cases, respectively. This study will not only serve as a resource of candidate biomarkers but will contribute towards the existing knowledge on the role of the candidate molecules towards disease progression and therapeutic potential.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Peroxirredoxinas/biossíntese , Proteínas rab de Ligação ao GTP/biossíntese , Idoso , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Peroxirredoxinas/genética , Proteoma/genética , Proteômica , Espectrometria de Massas em Tandem , Proteínas rab de Ligação ao GTP/genética
6.
Cancer Cell Int ; 15: 74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225121

RESUMO

BACKGROUND: Squamous cell carcinoma of the oral cavity (SCCOC) is the dominant origin of cancer associated mortality. Previous findings by our study reported that acquisition of anoikis resistance has a significant role in tumor progression of oral cavity. Several genes were over-expressed in anoikis-resistant cells under detached conditions which we confirmed earlier by microarray. Normal oral squamous epithelia grow adherent to a basement membrane, and when detached from the extracellular matrix, undergoes programmed cell death. The acquisition of anoikis-resistance is crucial phenomena in oral tumor advancement. In the current study, we have identified S100A7 expression as contributing factor for anoikis resistance and tumorigenicity in human oral cancer cells. Further, we have explored that elevated S100A7 expression in anoikis-sensitive oral keratinocytes and cancer cells reshape them more resistant to anoikis and apoptosis inducers via activation of cellular intrinsic and extrinsic avenue. METHODS: A subset of human cancer cell lines TU167, JMAR, JMARC39, JMARC42 and MDA-MB-468 were utilized for the generation of resistant stable cell lines. Further, immunohistochemistry, western blot and immunoprecipitation, assays of apoptosis, soft agar assay, orthotopic animal model and signaling elucidation were performed to establish our hypothesis. RESULTS: S100A7 gene is found to be responsible for anoikis resistance and tumorigenicity in human oral cancer cells. We have observed up-regulation of S100A7 in anoikis resistant cell lines, orthotropic model and patients samples with head and neck cancer. It is also noticed that secretion of S100A7 protein in conditioned medium by anoikis resistant head & neck cancer cell and in saliva of head and neck cancer patients. Up-regulation of S100A7 expression has triggered enhanced tumorigenicity and anchorage-independent growth of cancer cells through Akt phosphorylation leading to development of aniokis resistance in head and neck cancer cells. CONCLUSIONS: These data have led us to conclude that S100A7 is the major contributing factor in mediating anoikis-resistance of oral cancer cells and local tumor progression, and S100A7 might be useful as diagnostic marker for early detection of primary and recurrent squamous cell cancer.

7.
Mol Pharm ; 12(12): 4214-25, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26505213

RESUMO

Akt overexpression in cancer causes resistance to traditional chemotherapeutics. Silencing Akt through siRNA provides new therapeutic options; however, poor in vivo siRNA pharmacokinetics impede translation. We demonstrate that acidic milieu-sensitive multilamellar gold niosomes (Nio-Au) permit targeted delivery of both Akt-siRNA and thymoquinone (TQ) in tamoxifen-resistant and Akt-overexpressing MCF7 breast cancer cells. Octadecylamine groups of functionalized gold nanoparticles impart cationic attribute to niosomes, stabilized through polyethylene glycol. TQ's aqueous insolubility renders its encapsulation within hydrophobic core, and negatively charged siRNA binds in hydrophilic region of cationic niosomes. These niosomes were exploited to effectively knockdown Akt, thereby sensitizing cells to TQ. Immunoblot studies revealed enhanced apoptosis by inducing p53 and inhibiting MDM2 expression, which was consistent with in vivo xenograft studies. This innovative strategy, using Nio-Au to simultaneously deliver siRNA (devoid of any chemical modification) and therapeutic drug, provides an efficacious approach for treating therapy-resistant cancers with significant translational potential.


Assuntos
Benzoquinonas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ouro/administração & dosagem , Nanopartículas/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Tamoxifeno/farmacologia
8.
Mol Cancer Ther ; 23(1): 56-67, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37703580

RESUMO

Triple-negative breast cancer (TNBC) represents the most lethal and treatment-resistant breast cancer subtype with limited treatment options. We previously identified a protein complex unique to TNBC composed of the gap junction protein connexin 26 (Cx26), the pluripotency transcription factor NANOG, and focal adhesion kinase (FAK). We sought to determine whether a peptide mimetic of the interaction region of Cx26 attenuated tumor growth in preclinical models. We designed peptides based on Cx26 juxtamembrane domains and performed binding experiments with NANOG and FAK using surface plasmon resonance. Binding studies revealed that the Cx26 C-terminal tail and intracellular loop bound to NANOG and FAK with submicromolar-to-micromolar affinity and that a 5-amino acid sequence in the C-terminal tail of Cx26 (RYCSG) was sufficient for binding. Peptides with high affinity were engineered with a cell-penetrating antennapedia sequence and assessed in functional assays including cell proliferation, tumorsphere formation, and in vivo tumor growth, and downstream signaling changes were measured. The cell-penetrating Cx26 peptide (aCx26-pep) disrupted self-renewal while reducing nuclear FAK and NANOG and inhibiting NANOG target gene expression in TNBC cells but not luminal mammary epithelial cells. In vivo, aCx26-pep reduced tumor growth and proliferation and induced cell death. Here, we provide proof-of-concept that a Cx26 peptide-based strategy inhibits growth and alters NANOG activity specifically in TNBC, indicating the therapeutic potential of this targeting approach.


Assuntos
Peptídeos Penetradores de Células , Conexina 26 , Quinase 1 de Adesão Focal , Proteína Homeobox Nanog , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/terapia , Proteína Homeobox Nanog/antagonistas & inibidores , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Conexina 26/química , Conexina 26/uso terapêutico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/uso terapêutico
9.
J Ovarian Res ; 16(1): 122, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370140

RESUMO

Poly-ADP Ribose Polymerase (PARP) targeted therapy is clinically approved for the treatment of homologous recombination (HR) repair deficient tumors. The remarkable success of this therapy in the treatment of HR repair deficient cancers has not translated to HR-proficient cancers. Our studies identify the novel role of non-receptor lymphocyte-specific protein tyrosine kinase (LCK) in the regulation of HR repair in endometrioid epithelial ovarian cancer (eEOC) model. We show that DNA damage leads to direct interaction of LCK with the HR repair proteins RAD51 and BRCA1 in a kinase dependent manner RAD51 and BRCA1 stabilization. LCK expression is induced and activated in the nucleus in response to DNA damage insult. Disruption of LCK expression attenuates RAD51, BRCA1, and BRCA2 protein expression by hampering there stability and results in inhibition of HR-mediated DNA repair including suppression of RAD51 foci formation, and augmentation of γH2AX foci formation. In contrast LCK overexpression leads to increased RAD51 and BRCA1 expression with a concomitant increase in HR DNA damage repair. Importantly, attenuation of LCK sensitizes HR-proficient eEOC cells to PARP inhibitor in cells and pre-clinical mouse studies. Collectively, our findings identify a novel therapeutic strategy to expand the utility of PARP targeted therapy in HR proficient ovarian cancer.


Assuntos
Carcinoma Endometrioide , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/genética , Carcinoma Endometrioide/tratamento farmacológico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
10.
J Exp Ther Oncol ; 10(2): 139-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23350354

RESUMO

Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Caspases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Catalase/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa