Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theriogenology ; 59(8): 1839-50, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12566156

RESUMO

This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.


Assuntos
Criopreservação/veterinária , Embrião de Mamíferos/fisiologia , Cabras , Oócitos/fisiologia , Animais , Blastocisto/fisiologia , Células Cultivadas , Fase de Clivagem do Zigoto , Criopreservação/instrumentação , Criopreservação/métodos , Técnicas de Cultura , Feminino , Temperatura Alta , Mórula/fisiologia , Nitrogênio , Gravidez , Coleta de Tecidos e Órgãos/veterinária
2.
Proc Natl Acad Sci U S A ; 104(34): 13603-8, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17660298

RESUMO

Dangerous organophosphorus (OP) compounds have been used as insecticides in agriculture and in chemical warfare. Because exposure to OP could create a danger for humans in the future, butyrylcholinesterase (BChE) has been developed for prophylaxis to these chemicals. Because it is impractical to obtain sufficient quantities of plasma BChE to treat humans exposed to OP agents, the production of recombinant BChE (rBChE) in milk of transgenic animals was investigated. Transgenic mice and goats were generated with human BChE cDNA under control of the goat beta-casein promoter. Milk from transgenic animals contained 0.1-5 g/liter of active rBChE. The plasma half-life of PEGylated, goat-derived, purified rBChE in guinea pigs was 7-fold longer than non-PEGylated dimers. The rBChE from transgenic mice was inhibited by nerve agents at a 1:1 molar ratio. Transgenic goats produced active rBChE in milk sufficient for prophylaxis of humans at risk for exposure to OP agents.


Assuntos
Butirilcolinesterase/metabolismo , Leite/efeitos dos fármacos , Leite/enzimologia , Intoxicação por Organofosfatos , Animais , Animais Geneticamente Modificados , Butirilcolinesterase/genética , Butirilcolinesterase/isolamento & purificação , Butirilcolinesterase/farmacocinética , Metabolismo dos Carboidratos , Carboidratos/análise , Regulação Enzimológica da Expressão Gênica , Cabras , Cobaias , Humanos , Camundongos , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa