RESUMO
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.
Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterase , Criança , Humanos , Enzimas Desubiquitinantes , Herpesvirus Humano 8/fisiologia , Infecções por HIV/complicações , Linfoma de Efusão Primária , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Ubiquitina Tiolesterase/genética , Proteínas Virais/genéticaRESUMO
Answer questions and earn CME/CNE The human body harbors enormous numbers of microbiota that influence cancer susceptibility, in part through their prodigious metabolic capacity and their profound influence on immune cell function. Microbial pathogens drive tumorigenesis in 15% to 20% of cancer cases. Even larger numbers of malignancies are associated with an altered composition of commensal microbiota (dysbiosis) based on microbiome studies using metagenomic sequencing. Although association studies cannot distinguish whether changes in microbiota are causes or effects of cancer, a causative role is supported by rigorously controlled preclinical studies using gnotobiotic mouse models colonized with one or more specific bacteria. These studies demonstrate that microbiota can alter cancer susceptibility and progression by diverse mechanisms, such as modulating inflammation, inducing DNA damage, and producing metabolites involved in oncogenesis or tumor suppression. Evidence is emerging that microbiota can be manipulated for improving cancer treatment. By incorporating probiotics as adjuvants for checkpoint immunotherapy or by designing small molecules that target microbial enzymes, microbiota can be harnessed to improve cancer care. CA Cancer J Clin 2017;67:326-344. © 2017 American Cancer Society.
Assuntos
Microbiota , Neoplasias/microbiologia , Neoplasias/terapia , Animais , Carcinogênese , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Disbiose , Humanos , Metagenômica , Medicina de PrecisãoRESUMO
Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial ß-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan's effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage.
Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Glucuronidase/antagonistas & inibidores , Glucuronidase/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Bactérias/efeitos dos fármacos , Modelos Animais de Doenças , Disbiose/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Glucuronidase/metabolismo , Humanos , Irinotecano/farmacologia , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológicoRESUMO
The intestinal microbiome encodes vast metabolic potential, and multidisciplinary approaches are enabling a mechanistic understanding of how bacterial enzymes impact the metabolism of diverse pharmaceutical compounds, including chemotherapeutics. Microbiota alter the activity of many drugs and chemotherapeutics via direct and indirect mechanisms; some of these alterations result in changes to the drug's bioactivity and bioavailability, causing toxic gastrointestinal side effects. Gastrointestinal toxicity is one of the leading complications of systemic chemotherapy, with symptoms including nausea, vomiting, diarrhea, and constipation. Patients undergo dose reductions or drug holidays to manage these adverse events, which can significantly harm prognosis, and can result in mortality. Selective and precise targeting of the gut microbiota may alleviate these toxicities. Understanding the composition and function of the microbiota may serve as a biomarker for prognosis, and predict treatment efficacy and potential adverse effects, thereby facilitating personalized medicine strategies for cancer patients.
Assuntos
Antineoplásicos/efeitos adversos , Gastroenteropatias/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Gastroenteropatias/microbiologia , Gastroenteropatias/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiopatologia , Humanos , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Probióticos/administração & dosagemRESUMO
Viruses depend upon the host cell for manufacturing components of progeny virions. To mitigate the inextricable dependence on host cell protein synthesis, viruses can modulate protein synthesis through a variety of mechanisms. We report that the viral protein kinase (vPK) encoded by open reading frame 36 (ORF36) of Kaposi's sarcoma-associated herpesvirus (KSHV) enhances protein synthesis by mimicking the function of the cellular protein S6 kinase (S6KB1). Similar to S6KB1, vPK phosphorylates the ribosomal S6 protein and up-regulates global protein synthesis. vPK also augments cellular proliferation and anchorage-independent growth. Furthermore, we report that both vPK and S6KB1 phosphorylate the enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) and that both kinases promote endothelial capillary tubule formation.
Assuntos
Herpesvirus Humano 8/enzimologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Virais/metabolismo , Simulação por Computador , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Especificidade por Substrato , Proteínas Virais/químicaRESUMO
Recent advances suggest that in vivo reprogramming of endogenous cell populations provides a viable alternative for neuron replacement. Astrocytes and oligodendrocyte precursor cells can be induced to transdifferentiate into neurons in the CNS, but, in these instances, reprogramming requires either transgenic mice or retroviral-mediated gene expression. We developed a microRNA (miRNA)-GFP construct that in vitro significantly reduced the expression of polypyrimidine tract-binding protein, and, subsequently, we packaged this construct in a novel oligodendrocyte preferring adeno-associated virus vector. Ten days after rat striatal transduction, the vast majority of the GFP-positive cells were oligodendrocytes, but 6 weeks to 6 months later, the majority of GFP-positive cells exhibited neuronal morphology and co-localized with the neuronal marker NeuN. Patch-clamp studies on striatal slices established that the GFP-positive cells exhibited electrophysiological properties indicative of mature neurons, such as spontaneous action potentials and spontaneous inhibitory postsynaptic currents. Also, 3 months after striatal vector administration, GFP-positive terminals in the ipsilateral globus pallidus or substantia nigra retrogradely transported fluorescent beads back to GFP-positive striatal cell bodies, indicating the presence of functional presynaptic terminals. Thus, this viral vector approach provides a potential means to harness resident oligodendrocytes as an endogenous source for in vivo neuronal replacement.
Assuntos
Transdiferenciação Celular/genética , Reprogramação Celular/genética , Corpo Estriado/citologia , Vetores Genéticos/genética , Neurônios/citologia , Oligodendroglia/citologia , Animais , Linhagem Celular , Dependovirus/genética , Humanos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Interferência de RNA , RNA Interferente Pequeno , RatosRESUMO
UNLABELLED: Understanding the entry and trafficking mechanism(s) of recombinant adeno-associated virus (rAAV) into host cells can lead to evolution in capsid and vector design and delivery methods, resulting in enhanced transduction and therapeutic gene expression. Variability of findings regarding the early entry pathway of rAAV supports the possibility that rAAV, like other viruses, can utilize more than one infectious entry pathway. We tested whether inhibition of macropinocytosis impacted rAAV transduction of HeLa cells compared to hepatocellular carcinoma cell lines. We found that macropinocytosis inhibitor cytochalasin D blocked rAAV transduction of HeLa cells (>2-fold) but enhanced (10-fold) transduction in HepG2 and Huh7 lines. Similar results were obtained with another macropinocytosis inhibitor, 5-(N-ethyl-N-isopropyl) amiloride (EIPA). The augmented transduction was due to neither viral binding nor promoter activity, affected multiple rAAV serotypes (rAAV2, rAAV2-R585E, and rAAV8), and influenced single-stranded and self-complementary virions to comparable extents. Follow-up studies using CDC42 inhibitor ML141 and p21-activated kinase 1 (PAK1) siRNA knockdown also resulted in enhanced HepG2 transduction. Microscopy revealed that macropinocytosis inhibition correlated with expedited nuclear entry of the rAAV virions into HepG2 cells. Enhancement of hepatocellular rAAV transduction extended to the mouse liver in vivo (4-fold enhancement) but inversely blocked heart tissue transduction (13-fold). This evidence of host cell-specific rAAV entry pathways confers a potent means for controlling and enhancing vector delivery and could help unify the divergent accounts of rAAV cellular entry mechanisms. IMPORTANCE: There is a recognized need for improved rAAV vector targeting strategies that result in delivery of fewer total particles, averting untoward toxicity and/or an immune response against the vector. A critical step in rAAV transduction is entry and early trafficking through the host cellular machinery, the mechanisms of which are under continued study. However, should the early entry and trafficking mechanisms of rAAV differ across virus serotype or be dependent on host cell environment, this could expand our ability to target particular cells and tissue for selective transduction. Thus, the observation that inhibiting macropinocytosis leads to cell-specific enhancement or inhibition of rAAV transduction that extends to the organismic level exposes a new means of modulating vector targeting.
Assuntos
Dependovirus/fisiologia , Transdução Genética , Internalização do Vírus , Linhagem Celular , Dependovirus/genética , Vetores Genéticos , HumanosRESUMO
The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL.
Assuntos
Linfócitos B/metabolismo , Ácidos Graxos/biossíntese , Glicólise/fisiologia , Linfoma de Células B/metabolismo , Linfoma de Efusão Primária/metabolismo , Redes e Vias Metabólicas/fisiologia , Transdução de Sinais/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Biologia Computacional , Ácido Graxo Sintases/antagonistas & inibidores , Humanos , Immunoblotting , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer.
RESUMO
BACKGROUND: Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. RESULTS: Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. CONCLUSIONS: Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.
Assuntos
Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Interleucina-10 , Animais , Humanos , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Disbiose/microbiologia , Interleucina-10/genética , Colite/microbiologia , Fezes/microbiologia , Colo/microbiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Inflamação , MasculinoRESUMO
Undernutrition in children commonly disrupts the structure and function of the small intestinal microbial community, leading to enteropathies, compromised metabolic health, and impaired growth and development. The mechanisms by which diet and microbes mediate the balance between commensal and pathogenic intestinal flora remain elusive. In a murine model of undernutrition, we investigated the direct interactions Giardia lamblia, a prevalent small intestinal pathogen, on indigenous microbiota and specifically on Lactobacillus strains known for their mucosal and growth homeostatic properties. Our research reveals that Giardia colonization shifts the balance of lactic acid bacteria, causing a relative decrease in Lactobacillus spp . and an increase in Bifidobacterium spp . This alteration corresponds with a decrease in multiple indicators of mucosal and nutritional homeostasis. Additionally, protein-deficient conditions coupled with Giardia infection exacerbate the rise of primary bile acids and susceptibility to bile acid-induced intestinal barrier damage. In epithelial cell monolayers, Lactobacillus spp . mitigated bile acid-induced permeability, showing strain-dependent protective effects. In vivo, L. plantarum, either alone or within a Lactobacillus spp consortium, facilitated growth in protein-deficient mice, an effect attenuated by Giardia , despite not inhibiting Lactobacillus colonization. These results highlight Giardia's potential role as a disruptor of probiotic functional activity, underscoring the imperative for further research into the complex interactions between parasites and bacteria under conditions of nutritional deficiency.
RESUMO
The gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial ß-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation. Here we report the structure-activity relationships of two selective piperazine-containing bacterial GUS inhibitors. We explore the potency and mechanism of action of novel compounds using purified GUS enzymes and co-crystal structures. Our results establish the importance of the piperazine nitrogen placement and nucleophilicity as well as the presence of a cyclohexyl moiety appended to the aromatic core. Using these insights, we synthesized an improved microbial GUS inhibitor, UNC10206581, that potently inhibits both the FMN-binding and loop 1 GUS enzymes in the human gut microbiome, does not inhibit bovine GUS, and is non-toxic within a relevant dosing range. Kinetic analyses demonstrate that UNC10206581 undergoes a slow-binding and substrate-dependent mechanism of inhibition similar to that of the parent scaffolds. Finally, we show that UNC10206581 displays potent activity within the physiologically relevant systems of microbial cultures and human fecal protein lysates examined by metagenomic and metaproteomic methods. Together, these results highlight the discovery of more effective bacterial GUS inhibitors for the alleviation of microbe-mediated homeostatic dysregulation and drug toxicities and potential therapeutic development.
RESUMO
Women are at significantly greater risk of metabolic dysfunction after menopause, which subsequently leads to numerous chronic illnesses. The gut microbiome is associated with obesity and metabolic dysfunction, but its interaction with female sex hormone status and the resulting impact on host metabolism remains unclear. Herein, we characterized inflammatory and metabolic phenotypes as well as the gut microbiome associated with ovariectomy and high-fat diet feeding, compared to gonadal intact and low-fat diet controls. We then performed fecal microbiota transplantation (FMT) using gnotobiotic mice to identify the impact of ovariectomy-associated gut microbiome on inflammatory and metabolic outcomes. We demonstrated that ovariectomy led to greater gastrointestinal permeability and inflammation of the gut and metabolic organs, and that a high-fat diet exacerbated these phenotypes. Ovariectomy also led to alteration of the gut microbiome, including greater fecal ß-glucuronidase activity. However, differential changes in the gut microbiome only occurred when fed a low-fat diet, not the high-fat diet. Gnotobiotic mice that received the gut microbiome from ovariectomized mice fed the low-fat diet had greater weight gain and hepatic gene expression related to metabolic dysfunction and inflammation than those that received intact sham control-associated microbiome. These results indicate that the gut microbiome responds to alterations in female sex hormone status and contributes to metabolic dysfunction. Identifying and developing gut microbiome-targeted modulators to regulate sex hormones may be useful therapeutically in remediating menopause-related diseases.
Assuntos
Microbioma Gastrointestinal , Humanos , Feminino , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial ß-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.
Assuntos
Microbioma Gastrointestinal , Glucuronidase , Homeostase , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Glucuronidase/metabolismo , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Glucuronídeos/metabolismo , Humanos , Intestinos/microbiologia , Masculino , Vida Livre de GermesRESUMO
The world is witnessing a global increase in the urban population, particularly in developing Asian and African countries. Concomitantly, the global burden of non-communicable diseases (NCDs) is rising, markedly associated with the changing landscape of lifestyle and environment during urbanization. Accumulating studies have revealed the role of the gut microbiome in regulating the immune and metabolic homeostasis of the host, which potentially bridges external factors to the host (patho-)physiology. In this review, we discuss the rising incidences of NCDs during urbanization and their links to the compositional and functional dysbiosis of the gut microbiome. In particular, we elucidate the effects of urbanization-associated factors (hygiene/pollution, urbanized diet, lifestyles, the use of antibiotics, and early life exposure) on the gut microbiome underlying the pathogenesis of NCDs. We also discuss the potential and feasibility of microbiome-inspired and microbiome-targeted approaches as novel avenues to counteract NCDs, including fecal microbiota transplantation, diet modulation, probiotics, postbiotics, synbiotics, celobiotics, and precision antibiotics.
Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças não Transmissíveis , Probióticos , Humanos , Microbioma Gastrointestinal/fisiologia , Urbanização , Doenças não Transmissíveis/terapia , Doenças não Transmissíveis/tratamento farmacológico , Transplante de Microbiota Fecal , Antibacterianos/uso terapêutico , Disbiose/tratamento farmacológico , PrebióticosRESUMO
Primary effusion lymphoma (PEL) constitutes a subset of non-Hodgkin lymphoma whose incidence is highly increased in the context of HIV infection. Kaposi sarcoma-associated herpesvirus is the causative agent of PEL. The phosphatidylinositol 3-kinase (PI3K) signaling pathway plays a critical role in cell proliferation and survival, and this pathway is dysregulated in many different cancers, including PEL, which display activated PI3K, Akt, and mammalian target of rapamycin (mTOR) kinases. PELs rely heavily on PI3K/Akt/mTOR signaling, are dependent on autocrine and paracrine growth factors, and also have a poor prognosis with reported median survival times of less than 6 months. We compared different compounds that inhibit the PI3K/Akt/mTOR pathway in PEL. Although compounds that modulated activity of only a single pathway member inhibited PEL proliferation, the use of a novel compound, NVP-BEZ235, that dually inhibits both PI3K and mTOR kinases was significantly more efficacious in culture and in a PEL xenograft tumor model. NVP-BEZ235 was effective at low nanomolar concentrations and has oral bioavailability. We also report a novel mechanism for NVP-BEZ235 involving the suppression of multiple autocrine and paracrine growth factors required for lymphoma survival. Our data have broad applicability for the treatment of cytokine-dependent tumors with PI3K/mTOR dual inhibitors.
Assuntos
Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinolinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Comunicação Parácrina/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosiglitazona , Serina-Treonina Quinases TOR , Tiazolidinedionas/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Success of live biotherapeutics depends upon sustained and durable engraftment of beneficial microbes with robust functional output. In this issue of Cell Host & Microbe, Button et al. (2022) report that a human milk oligosaccharide-Bifidobacterium synbiotic delivers by supporting functional engraftment in healthy adults without antibiotic administration.
Assuntos
Simbióticos , Adulto , Bifidobacterium , Humanos , Leite Humano , OligossacarídeosRESUMO
The hydrolysis of xenobiotic glucuronides by gut bacterial glucuronidases reactivates previously detoxified compounds resulting in severe gut toxicity for the host. Selective bacterial ß-glucuronidase inhibitors can mitigate this toxicity but their impact on wider host metabolic processes has not been studied. To investigate this the inhibitor 4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4',5':4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine (UNC10201652, Inh 9) was administered to mice to selectively inhibit a narrow range of bacterial ß-glucuronidases in the gut. The metabolomic profiles of the intestinal contents, biofluids, and several tissues involved in the enterohepatic circulation were measured and compared to control animals. No biochemical perturbations were observed in the plasma, liver or gall bladder. In contrast, the metabolite profiles of urine, colon contents, feces and gut wall were altered compared to the controls. Changes were largely restricted to compounds derived from gut microbial metabolism. This work establishes that inhibitors targeted towards bacterial ß-glucuronidases modulate the functionality of the intestinal microbiota without adversely impacting the host metabolic system.
Assuntos
Microbioma Gastrointestinal , Glucuronidase , Camundongos , Animais , Glucuronidase/metabolismo , Microbioma Gastrointestinal/fisiologia , Xenobióticos , Bactérias/metabolismo , MorfolinasRESUMO
The diversity of autologous cells being used and investigated for cancer therapy continues to increase. Mast cells (MCs) are tissue cells that contain a unique set of anti-cancer mediators and are found in and around tumors. We sought to exploit the anti-tumor mediators in MC granules to selectively target them to tumor cells using tumor specific immunoglobin E (IgE) and controllably trigger release of anti-tumor mediators upon tumor cell engagement. We used a human HER2/neu-specific IgE to arm human MCs through the high affinity IgE receptor (FcεRI). The ability of MCs to bind to and induce apoptosis of HER2/neu-positive cancer cells in vitro and in vivo was assessed. The interactions between MCs and cancer cells were investigated in real time using confocal microscopy. The mechanism of action using cytotoxic MCs was examined using gene array profiling. Genetically manipulating autologous MC to assess the effects of MC-specific mediators have on apoptosis of tumor cells was developed using siRNA. We found that HER2/neu tumor-specific IgE-sensitized MCs bound, penetrated, and killed HER2/neu-positive tumor masses in vitro. Tunneling nanotubes formed between MCs and tumor cells are described that parallel tumor cell apoptosis. In solid tumor, human breast cancer (BC) xenograft mouse models, infusion of HER2/neu IgE-sensitized human MCs co-localized to BC cells, decreased tumor burden, and prolonged overall survival without indications of toxicity. Gene microarray of tumor cells suggests a dependence on TNF and TGFß signaling pathways leading to apoptosis. Knocking down MC-released tryptase did not affect apoptosis of cancer cells. These studies suggest MCs can be polarized from Type I hypersensitivity-mediating cells to cytotoxic cells that selectively target tumor cells and specifically triggered to release anti-tumor mediators. A strategy to investigate which MC mediators are responsible for the observed tumor killing is described so that rational decisions can be made in the future when selecting which mediators to target for deletion or those that could further polarize them to cytotoxic MC by adding other known anti-tumor agents. Using autologous human MC may provide further options for cancer therapeutics that offers a unique anti-cancer mechanism of action using tumor targeted IgE's.