Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Bioinformatics ; 38(15): 3833-3834, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35695777

RESUMO

MOTIVATION: The role of metals in shaping and functioning of RNA is a well-established fact, and the understanding of that through the analysis of structural data has biological relevance. Often metal ions bind to one or more atoms of the nucleobase of an RNA. This fact becomes more interesting when such bases form a base pair with any other base. Furthermore, when metal ions bind to any residue of an RNA, the secondary structural features of the residue (helix, loop, unpaired, etc.) are also biologically important. The available metal-binding-related software tools cannot address such type-specific queries. RESULTS: To fill this limitation, we have designed a software tool, called MetBP that meets the goal. This tool is a stand-alone command-line-based tool and has no dependency on the other existing software. It accepts a structure file in mmCIF or PDB format and computes the base pairs and thereafter reports all metals that bind to one or more nucleotides that form pairs with another. It reports binding distance, angles along with base pair stability. It also reports several other important aspects, e.g. secondary structure of the residue in the RNA. MetBP can be used as a generalized metal-binding site detection tool for Proteins and DNA as well. AVAILABILITY AND IMPLEMENTATION: https://github.com/computational-biology/metbp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , Pareamento de Bases , RNA/química , Estrutura Secundária de Proteína , Metais , Íons
2.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37655772

RESUMO

DNA deformability and differential hydration are crucial determinants of biological processes ranging from genetic material packaging to gene expression; their associative details, however, remain inadequately understood. Herein, we report investigations of the dynamic and thermodynamic responses of the local hydration of a variety of base pair sequences. Leveraging in silico sampling and our in-house analyses, we first report the local conformational propensity of sequences that are either predisposed toward the canonical A- or B-conformations or are restrained to potential transitory pathways. It is observed that the transition from the unrestrained A-form to the B-form leads to lengthwise structural deformation. The insertion of intermittent -(CG)- base pairs in otherwise homogeneous -(AT)- sequences bears dynamical consequences for the vicinal hydration layer. Calculation of the excess (pair) entropy suggests substantially higher values of hydration water surrounding A conformations over the B- conformations. Applying the Rosenfeld approximation, we project that the diffusivity of water molecules proximal to canonical B conformation is least for the minor groove of the canonical B-conformation. We determine that structure, composition, and conformation specific groove dimension together influence the local hydration characteristics and, therefore, are expected to be important determinants of biological processes.

3.
Proteins ; 90(7): 1390-1412, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35157344

RESUMO

According to the "jigsaw puzzle" model of protein folding, the isomorphism between sequence and structure is substantially determined by the specific geometry of side-chain interactions, within the protein interior. In this work, we have attempted to predict the hydrophobic core of cyclophilin (LdCyp) from Leishmania donovani, utilizing a surface complementarity function, which selects for high goodness of fit between hydrophobic side-chain surfaces, rather in the manner of assembling a three-dimensional jigsaw puzzle. The computational core prediction method implemented here has been tried on two distinct scenarios, on the LdCyp polypeptide chain with native non-core residues and all core residues initially set to alanine, on a poly-glycine polypeptide chain. Molecular dynamics simulations appeared to indicate partial destabilization of the two designed sequences. However, experimental characterization of the designed sequences by circular dichroism (CD) spectroscopy and denaturant (GdmCl) induced unfolding, demonstrated disordered proteins. Stepwise reconstruction of the designed cores by cumulative sequential mutations identified the specific mutation (M122L) as primarily responsible for fold collapse and all design objectives were achieved upon rectifying this mutation. In summary, the study demonstrates regions of the core to contain highly specific (jigsaw puzzle-like) interactions sensitive to any perturbations and a predictive algorithm to identify such regions. A mutation within the core has been identified which exercises an inordinate influence on the global fold, reminiscent of metamorphic proteins. In addition, the computational procedure could predict substantial regions of the core (given main-chain coordinates) without any reference to non-core residues.


Assuntos
Dobramento de Proteína , Proteínas , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Peptídeos
4.
Biopolymers ; 113(7): e23492, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35615897

RESUMO

Specific recognition of DNA base sequences by proteins is vital for life-cycles of all organisms. In a large number of crystal structures of protein-DNA complexes, DNA conformation significantly deviates from the canonical B-DNA structure. A key question is whether such alternate conformations exist prior to protein binding and one is selected for complexation or the structure observed is induced by protein binding. Non-canonical base pairs, such as Hoogsteen base pairs, are often observed in crystal structures of protein-DNA complexes. We decided to explore whether the occurrence of such non-canonical base pairs in protein-DNA complexes is induced by the protein or is selected from pre-existing conformations. Detailed quantum chemical calculations with dispersion-corrected density functional theory (DFT-D) indicated that most of the non-canonical base pairs with DNA bases are stable even in the absence of the interacting amino acids. However, the G:G Hoogsteen base pair, which also appears in the telomere structure, appears to be unstable in the absence of other stabilizing agents, such as positively charged amino acids. Thus, the stability of many of the non-canonical base pair containing duplexes may be close to the canonical B-DNA structure and hence energetically accessible in the ground state; suggesting that the selection from pre-existing conformations may be an important mechanism for observed non-canonical base pairs in protein-DNA complexes.


Assuntos
DNA de Forma B , Aminoácidos , Pareamento de Bases , DNA/química , Ligação de Hidrogênio , Conformação de Ácido Nucleico
5.
J Comput Aided Mol Des ; 36(2): 131-140, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35059942

RESUMO

Base pairing in RNA are significantly rich and versatile due to the potential non-canonical base pairing amongst nucleotides. Not only that, one base in RNA can pair with more than one bases simultaneously. This opens up a new dimension of research to detect such types of base-base pair networks in RNA and to analyze them. Even if a base do not form a pair, it may have significant extent of [Formula: see text]-[Formula: see text] stacking overlap that can stabilize the structures. In this work, we report a software tool, called BPNet, that accepts a mmCIF or PDB file and computes the base-pair/[Formula: see text]-[Formula: see text] contact network components using graph formalism. The software can run on Linux platform in both serial and parallel modes. It generates several information in suitable file formats for visualization of the networks. This paper describes the BPNet software and also presents some interesting results obtained by analyzing several RNA structures by the software to show its effectiveness.


Assuntos
Biologia Computacional , RNA , Pareamento de Bases , Ligação de Hidrogênio , Conformação de Ácido Nucleico , RNA/química
6.
RNA ; 25(5): 573-589, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792229

RESUMO

Identification and characterization of base-multiplets, which are essentially mediated by base-pairing interactions, can provide insights into the diversity in the structure and dynamics of complex functional RNAs, and thus facilitate hypothesis driven biological research. The necessary nomenclature scheme, an extension of the geometric classification scheme for base-pairs by Leontis and Westhof, is however available only for base-triplets. In the absence of information on topology, this scheme is not applicable to quartets and higher order multiplets. Here we propose a topology-based classification scheme which, in conjunction with a graph-based algorithm, can be used for the automated identification and characterization of higher order base-multiplets in RNA structures. Here, the RNA structure is represented as a graph, where nodes represent nucleotides and edges represent base-pairing connectivity. Sets of connected components (of n nodes) within these graphs constitute subgraphs representing multiplets of "n" nucleotides. The different topological variants of the RNA multiplets thus correspond to different nonisomorphic forms of these subgraphs. To annotate RNA base-multiplets unambiguously, we propose a set of topology-based nomenclature rules for quartets, which are extendable to higher multiplets. We also demonstrate the utility of our approach toward the identification and annotation of higher order RNA multiplets, by investigating the occurrence contexts of selected examples in order to gain insights regarding their probable functional roles.


Assuntos
Algoritmos , Conformação de Ácido Nucleico , Nucleotídeos/química , RNA Bacteriano/química , RNA Fúngico/química , Pareamento de Bases , Biologia Computacional/métodos , Ligação de Hidrogênio , Nucleotídeos/genética , Nucleotídeos/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Software , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
7.
J Comput Aided Mol Des ; 34(1): 83-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31820194

RESUMO

DNA is an essential target for the treatment of various pathologies, especially cancer. Hence targeting DNA double helix for alteration of its function has been attempted by several ways. Drug-DNA intercalation, one such biophysical process, could not be studied extensively as this requires significant deformation of the receptor DNA. Here we report thorough theoretical investigation of intercalation process in daunomycin-DNA interaction, by performing molecular dynamics simulations of the drug-DNA complexes for various DNA sequences, followed by Free-energy analysis and density functional theory (DFT) based studies to understand the binding preference. The classical energy based analyses indicate that the drug prefers to bind to TC/GA sequence over others. The DFT based energies of supra-molecular complexes are always contaminated with basis set superposition error (BSSE), which can be corrected by counterpoise method. This method is quite effective for systems containing two molecular fragments but is not appropriate for studying interaction between two base pair fragments and the drug intercalated between them. We have adopted an extension of the counterpoise method for BSSE corrected interaction energy calculation. These interaction energies, along with the energy penalty due to un-stacking of the base pairs, also indicate TC/GA sequence is the most preferred sequence for binding.


Assuntos
Antibióticos Antineoplásicos/farmacologia , DNA/química , Daunorrubicina/farmacologia , Substâncias Intercalantes/farmacologia , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Termodinâmica
8.
Phys Chem Chem Phys ; 21(38): 21549-21560, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31536074

RESUMO

Repetitive cytosine rich i-motif forming sequences are abundant in the telomere, centromere and promoters of several oncogenes and in some instances are known to regulate transcription and gene expression. The in vivo existence of i-motif structures demands further insight into the factors affecting their formation and stability and development of better understanding of their gene regulatory functions. Most prior studies characterizing the conformational dynamics of i-motifs are based on i-motif forming synthetic constructs. Here, we present a systematic study on the stability and structural properties of biologically relevant i-motifs of telomeric and centromeric repeat fragments. Our results based on molecular dynamics simulations and quantum chemical calculations indicate that along with base pairing interactions within the i-motif core the overall folded conformation is associated with the stable C-HO sugar "zippers" in the narrow grooves and structured water molecules along the wide grooves. The stacked geometry of the hemi-protonated cytosine pairs within the i-motif core is mainly governed by the repulsive base stacking interaction. The loop sequence can affect the structural dynamics of the i-motif by altering the loop motion and backbone conformation. Overall this study provides microscopic insight into the i-motif structure that will be helpful to understand the structural aspect of mechanisms of gene regulation by i-motif DNA.


Assuntos
DNA/química , Substâncias Intercalantes/química , Motivos de Nucleotídeos , Solventes/química , Telômero/química , Pareamento de Bases , Citosina/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
9.
Biochim Biophys Acta Gen Subj ; 1862(9): 1883-1892, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29902552

RESUMO

BACKGROUND: Human Chronic and Acute Myeloid Leukemia are myeloproliferative disorders in myeloid lineage of blood cells characterized by accumulation of aberrant white blood cells. In cancer, the anomalous transcriptome includes deregulated expression of non-coding RNAs in conjunction with protein-coding mRNAs in human genome. The coding or non-coding RNA transcripts harboring miRNA-binding sites can converse with and regulate each other by explicitly contending for a limited pool of shared miRNAs and act as competitive endogenous RNAs (ceRNAs). An unifying hypothesis attributing 'modulation of expression of transcripts' in this fashion had been defined as 'competitive endogenous RNA hypothesis'. Network built with ceRNAs evidently offers a platform to elucidate complex regulatory interactions at post-transcriptional level in human cancers. METHODS: Contemplating cancers of human myeloid lineage we constructed ceRNA networks for CML and AML coding and non-coding repertoire utilizing patient sample data. Through functional enrichment analysis we selected the significant functional modules for transcripts being differentially expressed in Blastic phases of each cancer types with respect to Normal. After retrieving free energy of binding and duplex formation of shared miRNAs on ceRNAs, we performed statistical averaging of energy values over the ensemble of populations considering cellular system as in canonical (Iso-thermal) situation. RESULTS AND CONCLUSIONS: We aimed to shed light on 'Sibling Rivalry' in ceRNA partners from the perspective of statistical thermodynamics, identified major cross-talking tracks and ceRNAs influencing transcripts concerned in myeloid cancer systems. GENERAL SIGNIFICANCE: Insights into ceRNA-regulation will shed light on progression and prognosis of human Chronic and Acute Myeloid Leukemia.


Assuntos
Biomarcadores Tumorais/genética , Redes Reguladoras de Genes , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Estudos de Casos e Controles , Bases de Dados Factuais , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Transcriptoma
10.
Phys Chem Chem Phys ; 20(34): 21934-21948, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30088497

RESUMO

Metal ions are crucial for folding and function of noncoding RNAs. The fact that RNAs have very specific metal ion binding motifs further implies that contribution of metal ions (like Mg2+) in RNA's folding is not limited to simple compensation of electrostatic repulsions. Rather, their binding to RNA is driven by very specific contextual requirements. Elucidation of such factors is necessary for a comprehensive understanding of the sequence-structure-function paradigm in RNA. In this work, we have studied the consequences of Mg2+ binding on the geometry and stability of different noncanonical base pairs that shape up the complex structural landscape of RNA. Our results show that majority of the Mg2+ bound nucleobases are also part of a base pair. Interestingly, such base pairs belong only to a specific set of base pairing geometries. Out of them, we are able to identify 14 unique cases for which the native base pairing geometries are unstable under gas phase geometry optimization carried out in the absence of Mg2+ binding. Our density functional theory based calculations, performed using dispersion corrected M05-2X functional, suggest that, depending on its mode of binding, Mg2+ can stabilize and even fine tune a number of such base pairing geometries. These findings not only provide insights into how metal ions modulate the structure and dynamics of RNA molecules, they also provide a basis for improving the RNA structure prediction algorithms.


Assuntos
Magnésio/metabolismo , RNA/metabolismo , Pareamento de Bases , Ligação de Hidrogênio , Íons/química , Magnésio/química , Conformação de Ácido Nucleico , Teoria Quântica , RNA/química , Estabilidade de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa