Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Immunol ; 16(6): 653-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25867473

RESUMO

The methylcytosine dioxygenase TET1 ('ten-eleven translocation 1') is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Assuntos
Linfócitos B/fisiologia , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/fisiologia , Linfoma de Células B/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Instabilidade Cromossômica , Citosina/metabolismo , Metilação de DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Exoma/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
2.
Mol Cell ; 70(5): 894-905.e5, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883608

RESUMO

Despite considerable efforts, no physical mechanism has been shown to explain N-terminal codon bias in prokaryotic genomes. Using a systematic study of synonymous substitutions in two endogenous E. coli genes, we show that interactions between the coding region and the upstream Shine-Dalgarno (SD) sequence modulate the efficiency of translation initiation, affecting both intracellular mRNA and protein levels due to the inherent coupling of transcription and translation in E. coli. We further demonstrate that far-downstream mutations can also modulate mRNA levels by occluding the SD sequence through the formation of non-equilibrium secondary structures. By contrast, a non-endogenous RNA polymerase that decouples transcription and translation largely alleviates the effects of synonymous substitutions on mRNA levels. Finally, a complementary statistical analysis of the E. coli genome specifically implicates avoidance of intra-molecular base pairing with the SD sequence. Our results provide general physical insights into the coding-level features that optimize protein expression in prokaryotes.


Assuntos
Códon de Iniciação , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Motivos de Nucleotídeos , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estabilidade de RNA , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Relação Estrutura-Atividade , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 120(18): e2219855120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094144

RESUMO

Enzymes play a vital role in life processes; they control chemical reactions and allow functional cycles to be synchronized. Many enzymes harness large-scale motions of their domains to achieve tremendous catalytic prowess and high selectivity for specific substrates. One outstanding example is provided by the three-domain enzyme adenylate kinase (AK), which catalyzes phosphotransfer between ATP to AMP. Here we study the phenomenon of substrate inhibition by AMP and its correlation with domain motions. Using single-molecule FRET spectroscopy, we show that AMP does not block access to the ATP binding site, neither by competitive binding to the ATP cognate site nor by directly closing the LID domain. Instead, inhibitory concentrations of AMP lead to a faster and more cooperative domain closure by ATP, leading in turn to an increased population of the closed state. The effect of AMP binding can be modulated through mutations throughout the structure of the enzyme, as shown by the screening of an extensive AK mutant library. The mutation of multiple conserved residues reduces substrate inhibition, suggesting that substrate inhibition is an evolutionary well conserved feature in AK. Combining these insights, we developed a model that explains the complex activity of AK, particularly substrate inhibition, based on the experimentally observed opening and closing rates. Notably, the model indicates that the catalytic power is affected by the microsecond balance between the open and closed states of the enzyme. Our findings highlight the crucial role of protein motions in enzymatic activity.


Assuntos
Trifosfato de Adenosina , Adenilato Quinase , Adenilato Quinase/metabolismo , Ligantes , Sítios de Ligação , Domínios Proteicos , Trifosfato de Adenosina/metabolismo
4.
Mol Syst Biol ; 17(6): e10200, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34180142

RESUMO

The relationship between sequence variation and phenotype is poorly understood. Here, we use metabolomic analysis to elucidate the molecular mechanism underlying the filamentous phenotype of E. coli strains that carry destabilizing mutations in dihydrofolate reductase (DHFR). We find that partial loss of DHFR activity causes reversible filamentation despite SOS response indicative of DNA damage, in contrast to thymineless death (TLD) achieved by complete inhibition of DHFR activity by high concentrations of antibiotic trimethoprim. This phenotype is triggered by a disproportionate drop in intracellular dTTP, which could not be explained by drop in dTMP based on the Michaelis-Menten-like in vitro activity curve of thymidylate kinase (Tmk), a downstream enzyme that phosphorylates dTMP to dTDP. Instead, we show that a highly cooperative (Hill coefficient 2.5) in vivo activity of Tmk is the cause of suboptimal dTTP levels. dTMP supplementation rescues filamentation and restores in vivo Tmk kinetics to Michaelis-Menten. Overall, this study highlights the important role of cellular environment in sculpting enzymatic kinetics with system-level implications for bacterial phenotype.


Assuntos
Escherichia coli , Mutação Puntual , Escherichia coli/genética , Fenótipo
6.
Proc Natl Acad Sci U S A ; 116(23): 11265-11274, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097595

RESUMO

Proteins are only moderately stable. It has long been debated whether this narrow range of stabilities is solely a result of neutral drift toward lower stability or purifying selection against excess stability-for which no experimental evidence was found so far-is also at work. Here, we show that mutations outside the active site in the essential Escherichia coli enzyme adenylate kinase (Adk) result in a stability-dependent increase in substrate inhibition by AMP, thereby impairing overall enzyme activity at high stability. Such inhibition caused substantial fitness defects not only in the presence of excess substrate but also under physiological conditions. In the latter case, substrate inhibition caused differential accumulation of AMP in the stationary phase for the inhibition-prone mutants. Furthermore, we show that changes in flux through Adk could accurately describe the variation in fitness effects. Taken together, these data suggest that selection against substrate inhibition and hence excess stability may be an important factor determining stability observed for modern-day Adk.


Assuntos
Adenilato Quinase/metabolismo , Estabilidade Enzimática/fisiologia , Adenilato Quinase/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Mutação/genética , Estabilidade Proteica , Termodinâmica
7.
Genome Res ; 27(11): 1830-1842, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28986391

RESUMO

Transcriptional deregulation of oncogenic pathways is a hallmark of cancer and can be due to epigenetic alterations. 5-Hydroxymethylcytosine (5-hmC) is an epigenetic modification that has not been studied in pancreatic cancer. Genome-wide analysis of 5-hmC-enriched loci with hmC-seal was conducted in a cohort of low-passage pancreatic cancer cell lines, primary patient-derived xenografts, and pancreatic controls and revealed strikingly altered patterns in neoplastic tissues. Differentially hydroxymethylated regions preferentially affected known regulatory regions of the genome, specifically overlapping with known H3K4me1 enhancers. Furthermore, base pair resolution analysis of cytosine methylation and hydroxymethylation with oxidative bisulfite sequencing was conducted and correlated with chromatin accessibility by ATAC-seq and gene expression by RNA-seq in pancreatic cancer and control samples. 5-hmC was specifically enriched at open regions of chromatin, and gain of 5-hmC was correlated with up-regulation of the cognate transcripts, including many oncogenic pathways implicated in pancreatic neoplasia, such as MYC, KRAS, VEGFA, and BRD4 Specifically, BRD4 was overexpressed and acquired 5-hmC at enhancer regions in the majority of neoplastic samples. Functionally, acquisition of 5-hmC at BRD4 promoter was associated with increase in transcript expression in reporter assays and primary samples. Furthermore, blockade of BRD4 inhibited pancreatic cancer growth in vivo. In summary, redistribution of 5-hmC and preferential enrichment at oncogenic enhancers is a novel regulatory mechanism in human pancreatic cancer.


Assuntos
5-Metilcitosina/análogos & derivados , Neoplasias Pancreáticas/genética , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNA/métodos , 5-Metilcitosina/metabolismo , Animais , Linhagem Celular Tumoral , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Modelagem Computacional Específica para o Paciente
8.
J Biol Chem ; 293(39): 15002-15020, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30093409

RESUMO

Protein minimization is an attractive approach for designing vaccines against rapidly evolving pathogens such as human immunodeficiency virus, type 1 (HIV-1), because it can help in focusing the immune response toward conserved conformational epitopes present on complex targets. The outer domain (OD) of HIV-1 gp120 contains epitopes for a large number of neutralizing antibodies and therefore is a primary target for structure-based vaccine design. We have previously designed a bacterially expressed outer-domain immunogen (ODEC) that bound CD4-binding site (CD4bs) ligands with 3-12 µm affinity and elicited a modest neutralizing antibody response in rabbits. In this study, we have optimized ODEC using consensus sequence design, cyclic permutation, and structure-guided mutations to generate a number of variants with improved yields, biophysical properties, stabilities, and affinities (KD of 10-50 nm) for various CD4bs targeting broadly neutralizing antibodies, including the germline-reverted version of the broadly neutralizing antibody VRC01. In contrast to ODEC, the optimized immunogens elicited high anti-gp120 titers in rabbits as early as 6 weeks post-immunization, before any gp120 boost was given. Following two gp120 boosts, sera collected at week 22 showed cross-clade neutralization of tier 1 HIV-1 viruses. Using a number of different prime/boost combinations, we have identified a cyclically permuted OD fragment as the best priming immunogen, and a trimeric, cyclically permuted gp120 as the most suitable boosting molecule among the tested immunogens. This study also provides insights into some of the biophysical correlates of improved immunogenicity.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos CD4/imunologia , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/imunologia , HIV-1/química , Vacinas contra a AIDS/química , Vacinas contra a AIDS/uso terapêutico , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Antígenos CD4/química , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/genética , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Ligantes , Ligação Proteica , Coelhos
9.
PLoS Genet ; 11(10): e1005612, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26484862

RESUMO

Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.


Assuntos
Evolução Molecular , Transferência Genética Horizontal/genética , Filogenia , Tetra-Hidrofolato Desidrogenase/genética , Sequência de Aminoácidos/genética , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase/genética , Mutação , Especificidade da Espécie
10.
Blood ; 125(20): 3144-52, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25810490

RESUMO

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Interleucina-8/metabolismo , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicas/metabolismo , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Interleucina-8/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Camundongos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Receptores de Interleucina-8B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Immunol ; 190(6): 2966-75, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23408834

RESUMO

Epigenetic changes play important roles in carcinogenesis and influence initial steps in neoplastic transformation by altering genome stability and regulating gene expression. To characterize epigenomic changes during the transformation of normal plasma cells to myeloma, we modified the HpaII tiny fragment enrichment by ligation-mediated PCR assay to work with small numbers of purified primary marrow plasma cells. The nano-HpaII tiny fragment enrichment by ligation-mediated PCR assay was used to analyze the methylome of CD138(+) cells from 56 subjects representing premalignant (monoclonal gammopathy of uncertain significance), early, and advanced stages of myeloma, as well as healthy controls. Plasma cells from premalignant and early stages of myeloma were characterized by striking, widespread hypomethylation. Gene-specific hypermethylation was seen to occur in the advanced stages, and cell lines representative of relapsed cases were found to be sensitive to decitabine. Aberrant demethylation in monoclonal gammopathy of uncertain significance occurred primarily in CpG islands, whereas differentially methylated loci in cases of myeloma occurred predominantly outside of CpG islands and affected distinct sets of gene pathways, demonstrating qualitative epigenetic differences between premalignant and malignant stages. Examination of the methylation machinery revealed that the methyltransferase, DNMT3A, was aberrantly hypermethylated and underexpressed, but not mutated in myeloma. DNMT3A underexpression was also associated with adverse overall survival in a large cohort of patients, providing insights into genesis of hypomethylation in myeloma. These results demonstrate widespread, stage-specific epigenetic changes during myelomagenesis and suggest that early demethylation can be a potential contributor to genome instability seen in myeloma. We also identify DNMT3A expression as a novel prognostic biomarker and suggest that relapsed cases can be therapeutically targeted by hypomethylating agents.


Assuntos
Transformação Celular Neoplásica/imunologia , Metilação de DNA/genética , Metilação de DNA/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Transformação Celular Neoplásica/genética , Estudos de Coortes , Diagnóstico Precoce , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Mieloma Múltiplo/patologia , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Recidiva , Indução de Remissão , Reprodutibilidade dos Testes , Sindecana-1/biossíntese , Sindecana-1/genética , Células Tumorais Cultivadas
12.
Nucleic Acids Res ; 41(16): e157, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23861445

RESUMO

5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome-wide assays for 5-hmC determination are needed as many of the techniques for 5-methylcytosine (5-mC) determination, including methyl-sensitive restriction digestion and bisulfite sequencing cannot distinguish between 5-mC and 5-hmC. Glycosylation of 5-hmC residues by beta-glucosyl transferase (ß-GT) can make CCGG residues insensitive to digestion by MspI. Restriction digestion by HpaII, MspI or MspI after ß-GT conversion, followed by adapter ligation, massive parallel sequencing and custom bioinformatic analysis allowed us determine distribution of 5-mC and 5-hmC at single base pair resolution at MspI restriction sites. The resulting HpaII tiny fragment Enrichment by Ligation-mediated PCR with ß-GT (HELP-GT) assay identified 5-hmC loci that were validated at global level by liquid chromatography-mass spectrometry (LC-MS) and the locus-specific level by quantitative reverse transcriptase polymerase chain reaction of 5-hmC pull-down DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. The HELP-GT assay allowed global determination of 5-hmC and 5-mC from low amounts of DNA and with the use of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of determination of this modification in conjugation with conventional methylome analysis.


Assuntos
Citosina/análogos & derivados , DNA de Neoplasias/química , 5-Metilcitosina/análise , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Citosina/análise , Citosina/metabolismo , Expressão Gênica , Genoma Humano , Genômica/métodos , Glicosiltransferases/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Reação em Cadeia da Polimerase
13.
J Biol Chem ; 288(14): 9815-9825, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23430741

RESUMO

b12, one of the few broadly neutralizing antibodies against HIV-1, binds to the CD4 binding site (CD4bs) on the gp120 subunit of HIV-1 Env. Two small fragments of HIV-1 gp120, b121a and b122a, which display about 70% of the b12 epitope and include solubility-enhancing mutations, were designed. Bacterially expressed b121a/b122a were partially folded and could bind b12 but not the CD4bs-directed non-neutralizing antibody b6. Sera from rabbits primed with b121a or b122a protein fragments and boosted with full-length gp120 showed broad neutralizing activity in a TZM-bl assay against a 16-virus panel that included nine Tier 2 and 3 viruses as well as in a five-virus panel previously designed to screen for broad neutralization. Using a mean IC50 cut-off of 50, sera from control rabbits immunized with gp120 alone neutralized only one virus of the 14 non-Tier 1 viruses tested (7%), whereas sera from b121a- and b122a-immunized rabbits neutralized seven (50%) and twelve (86%) viruses, respectively. Serum depletion studies confirmed that neutralization was gp120-directed and that sera from animals immunized with gp120 contained lower amounts of CD4bs-directed antibodies than corresponding sera from animals immunized with b121a/b122a. Competition binding assays with b12 also showed that b121a/2a sera contained significantly higher amounts of antibodies directed toward the CD4 binding site than the gp120 sera. The data demonstrate that it is possible to elicit broadly neutralizing sera against HIV-1 in small animals.


Assuntos
Anticorpos Neutralizantes/química , Proteína gp120 do Envelope de HIV/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Biofísica/métodos , Antígenos CD4/química , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Imunoglobulina G/química , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas/química , Coelhos , Vacinas/química
14.
J Biol Chem ; 288(13): 8805-14, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23306203

RESUMO

Differentiation of hematopoietic stem cells to red cells requires coordinated expression of numerous erythroid genes and is characterized by nuclear condensation and extrusion during terminal development. To understand the regulatory mechanisms governing these widespread phenotypic changes, we conducted a high resolution methylomic and transcriptomic analysis of six major stages of human erythroid differentiation. We observed widespread epigenetic differences between early and late stages of erythropoiesis with progressive loss of methylation being the dominant change during differentiation. Gene bodies, intergenic regions, and CpG shores were preferentially demethylated during erythropoiesis. Epigenetic changes at transcription factor binding sites correlated significantly with changes in gene expression and were enriched for binding motifs for SCL, MYB, GATA, and other factors not previously implicated in erythropoiesis. Demethylation at gene promoters was associated with increased expression of genes, whereas epigenetic changes at gene bodies correlated inversely with gene expression. Important gene networks encoding erythrocyte membrane proteins, surface receptors, and heme synthesis proteins were found to be regulated by DNA methylation. Furthermore, integrative analysis enabled us to identify novel, potential regulatory areas of the genome as evident by epigenetic changes in a predicted PU.1 binding site in intron 1 of the GATA1 gene. This intronic site was found to be conserved across species and was validated to be a novel PU.1 binding site by quantitative ChIP in erythroid cells. Altogether, our study provides a comprehensive analysis of methylomic and transcriptomic changes during erythroid differentiation and demonstrates that human terminal erythropoiesis is surprisingly associated with hypomethylation of the genome.


Assuntos
Eritropoese/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Antígenos CD34/biossíntese , Sítios de Ligação , Diferenciação Celular , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Epigenômica , Eritrócitos/citologia , Citometria de Fluxo/métodos , Genoma Humano , Genômica , Humanos , Íntrons , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco/química
15.
Blood ; 120(10): 2076-86, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22753872

RESUMO

Even though hematopoietic stem cell (HSC) dysfunction is presumed in myelodysplastic syndrome (MDS), the exact nature of quantitative and qualitative alterations is unknown. We conducted a study of phenotypic and molecular alterations in highly fractionated stem and progenitor populations in a variety of MDS subtypes. We observed an expansion of the phenotypically primitive long-term HSCs (lineage(-)/CD34(+)/CD38(-)/CD90(+)) in MDS, which was most pronounced in higher-risk cases. These MDS HSCs demonstrated dysplastic clonogenic activity. Examination of progenitors revealed that lower-risk MDS is characterized by expansion of phenotypic common myeloid progenitors, whereas higher-risk cases revealed expansion of granulocyte-monocyte progenitors. Genome-wide analysis of sorted MDS HSCs revealed widespread methylomic and transcriptomic alterations. STAT3 was an aberrantly hypomethylated and overexpressed target that was validated in an independent cohort and found to be functionally relevant in MDS HSCs. FISH analysis demonstrated that a very high percentage of MDS HSC (92% ± 4%) carry cytogenetic abnormalities. Longitudinal analysis in a patient treated with 5-azacytidine revealed that karyotypically abnormal HSCs persist even during complete morphologic remission and that expansion of clonotypic HSCs precedes clinical relapse. This study demonstrates that stem and progenitor cells in MDS are characterized by stage-specific expansions and contain epigenetic and genetic alterations.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 7/genética , Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas/genética , Fator de Transcrição STAT3/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Azacitidina/administração & dosagem , Estudos de Casos e Controles , Linhagem da Célula , Metilação de DNA , Epigênese Genética , Citometria de Fluxo , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Cariotipagem , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Cultura Primária de Células , Recidiva , Fator de Transcrição STAT3/metabolismo
16.
Biochemistry ; 51(9): 1836-47, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22329717

RESUMO

Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the env surface protein. Native env consists of a trimer of gp120-gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs)-directed neutralizing antibodies over non-neutralizing ones. Some cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface. We have therefore designed cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1V2 loop. h-CMP-V1cyc is one such variant in which residues 153 and 142 are the N- and C-terminal residues, respectively, of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity than wild-type gp120. It binds non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cyc1, bound the V1V2 loop-directed broadly neutralizing antibodies PG9 and PG16 with ∼20-fold higher affinity than wild-type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support env models in which the V1V2 loops are proximal to the trimer interface.


Assuntos
Proteína gp120 do Envelope de HIV/genética , Peptídeos Cíclicos/química , Vacinas Sintéticas/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Antígenos CD4/química , Antígenos CD4/imunologia , Epitopos , Células HEK293 , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/imunologia , Humanos , Peptídeos Cíclicos/imunologia , Multimerização Proteica , Transfecção , Vacinas Sintéticas/imunologia
17.
Biochemistry ; 50(37): 7891-900, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21827143

RESUMO

CD4 is present on the surface of T-lymphocytes and is the primary cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. A construct consisting of the first two domains of CD4 (CD4D12) is folded and binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192-16202]. We now report the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L51I/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. Two mutations, G6A and V86L in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC(50)s as 4-domain CD4. These stabilized derivatives of human CD4 can be useful starting points for the design of other more complex viral entry inhibitors.


Assuntos
Antígenos CD4/química , Antígenos CD4/genética , Dobramento de Proteína , Antivirais/síntese química , Antivirais/metabolismo , Antivirais/farmacologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Mutação , Ligação Proteica/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Internalização do Vírus
18.
J Biol Chem ; 285(35): 27100-27110, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20558728

RESUMO

The outer domain (OD) of the HIV-1 envelope glycoprotein gp120 is an important target for vaccine design as it contains a number of conserved epitopes, including a large fraction of the CD4 binding site. Attempts to design OD-based immunogens in the past have met with little success. We report the design and characterization of an Escherichia coli-expressed OD-based immunogen (OD(EC)), based on the sequence of the HxBc2 strain. The OD(EC)-designed immunogen lacks the variable loops V1V2 and V3 and incorporates 11 designed mutations at the interface of the inner and the outer domains of gp120. Biophysical studies showed that OD(EC) is folded and protease-resistant, whereas OD(EC) lacking the designed mutations is highly aggregation-prone. In contrast to previously characterized OD constructs, OD(EC) bound CD4 and the broadly neutralizing antibody b12 but not the non-neutralizing antibodies b6 and F105. Upon immunization in rabbits, OD(EC) was highly immunogenic, and the sera showed measurable neutralization for four subtype B and one subtype C virus including two b12-resistant viruses. In contrast, sera from rabbits immunized with gp120 did not neutralize any of the viruses. OD(EC) is the first example of a gp120 fragment-based immunogen that yields significant neutralizing antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos CD4/imunologia , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Antígenos CD4/genética , Epitopos/química , Epitopos/genética , Feminino , Glicosilação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/genética , Humanos , Imunização , Mutação , Dobramento de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
19.
Cancers (Basel) ; 12(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967217

RESUMO

Background & Aims: ARID1A is postulated to be a tumor suppressor gene owing to loss-of-function mutations in human pancreatic ductal adenocarcinomas (PDAC). However, its role in pancreatic pathogenesis is not clear despite recent studies using genetically engineered mouse (GEM) models. We aimed at further understanding of its direct functional role in PDAC, using a combination of GEM model and PDAC cell lines. Methods: Pancreas-specific mutant Arid1a-driven GEM model (Ptf1a-Cre; KrasG12D; Arid1af/f or "KAC") was generated by crossing Ptf1a-Cre; KrasG12D ("KC") mice with Arid1af/f mice and characterized histologically with timed necropsies. Arid1a was also deleted using CRISPR-Cas9 system in established human and murine PDAC cell lines to study the immediate effects of Arid1a loss in isogenic models. Cell lines with or without Arid1a expression were developed from respective autochthonous PDAC GEM models, compared functionally using various culture assays, and subjected to RNA-sequencing for comparative gene expression analysis. DNA damage repair was analyzed in cultured cells using immunofluorescence and COMET assay. Results: Retention of Arid1a is critical for early progression of mutant Kras-driven pre-malignant lesions into PDAC, as evident by lower Ki-67 and higher apoptosis staining in "KAC" as compared to "KC" mice. Enforced deletion of Arid1a in established PDAC cell lines caused suppression of cellular growth and migration, accompanied by compromised DNA damage repair. Despite early development of relatively indolent cystic precursor lesions called intraductal papillary mucinous neoplasms (IPMNs), a subset of "KAC" mice developed aggressive PDAC in later ages. PDAC cells obtained from older autochthonous "KAC" mice revealed various compensatory ("escaper") mechanisms to overcome the growth suppressive effects of Arid1a loss. Conclusions: Arid1a is an essential survival gene whose loss impairs cellular growth, and thus, its expression is critical during early stages of pancreatic tumorigenesis in mouse models. In tumors that arise in the setting of ARID1A loss, a multitude of "escaper" mechanisms drive progression.

20.
Elife ; 82019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31663852

RESUMO

Even though pancreatic ductal adenocarcinoma (PDAC) is associated with fibrotic stroma, the molecular pathways regulating the formation of cancer associated fibroblasts (CAFs) are not well elucidated. An epigenomic analysis of patient-derived and de-novo generated CAFs demonstrated widespread loss of cytosine methylation that was associated with overexpression of various inflammatory transcripts including CXCR4. Co-culture of neoplastic cells with CAFs led to increased invasiveness that was abrogated by inhibition of CXCR4. Metabolite tracing revealed that lactate produced by neoplastic cells leads to increased production of alpha-ketoglutarate (aKG) within mesenchymal stem cells (MSCs). In turn, aKG mediated activation of the demethylase TET enzyme led to decreased cytosine methylation and increased hydroxymethylation during de novo differentiation of MSCs to CAF. Co-injection of neoplastic cells with TET-deficient MSCs inhibited tumor growth in vivo. Thus, in PDAC, a tumor-mediated lactate flux is associated with widespread epigenomic reprogramming that is seen during CAF formation.


Assuntos
Fibroblastos Associados a Câncer/patologia , Reprogramação Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Ácido Láctico/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Reprogramação Celular/genética , Metilação de DNA/efeitos dos fármacos , Humanos , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Invasividade Neoplásica , Receptores CXCR4/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Transcriptoma/genética , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa