Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 19(4): 1908-1933, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337097

RESUMO

The bioactive ingredients in commonly consumed foods include, but are not limited to, prebiotics, prebiotic-like components, probiotics, and postbiotics. The bioactive ingredients in functional foods have also been associated with beneficial effects on human health. For example, they aid in shaping of gut microflora and promotion of immunity. These functional components also contribute in preventing serious diseases such as cardiovascular malfunction and tumorigenesis. However, the specific mechanisms of these positive influences on human health are still under investigation. In this review, we aim to emphasize the major contents of probiotics, prebiotics, and prebiotic-like components commonly found in consumable functional foods, and we present an overview of direct and indirect benefits they provide on human health. The major contributors are certain families of metabolites, specifically short-chain fatty acids and polyunsaturated fatty acids produced by probiotics, and prebiotics, or prebiotic-like components such as flavonoids, polyphenols, and vitamins that are found in functional foods. These functional ingredients in foods influence the gut microbiota by stimulating the growth of beneficial microbes and the production of beneficial metabolites that, in turn, have direct benefits to the host, while also providing protection from pathogens and maintaining a balanced gut ecosystem. The complex interactions that arise among functional food ingredients, human physiology, the gut microbiota, and their respective metabolic pathways have been found to minimize several factors that contribute to the incidence of chronic disease, such as inflammation oxidative stress.


Assuntos
Alimento Funcional , Prebióticos/microbiologia , Probióticos/química , Ácidos Graxos , Microbioma Gastrointestinal/fisiologia , Humanos , Probióticos/farmacologia
2.
Sci Rep ; 10(1): 16259, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004922

RESUMO

In this study, the effect of sustainable probiotics on Campylobacter jejuni colonization and gut microbiome composition was evaluated using chicken as a model organism. Chickens were given Lactobacillus casei over-expressing myosin-cross-reactive antigen (LC+mcra). LC+mcra can generate bioactive compounds in larger quantity including conjugated linoleic acid. A total of 120 chickens were used in duplicate trials to investigate the effectiveness of LC+mcra in decreasing C. jejuni colonization by means of kanamycin resistant strain compared to the control group. We observed that LC+mcra can efficiently colonize various parts of the chicken gut and competitively reduce colonization of natural and challenged C. jejuni and natural Salmonella enterica. LC+mcra was found to reduce C. jejuni colonization in cecum, ileum and jejunum, by more than one log CFU/g when compared to the no-probiotic control group. Furthermore, 16S rRNA compositional analysis revealed lower abundance of Proteobacteria, higher abundance of Firmicutes, along with enriched bacterial genus diversity in gut of LC+mcra fed chicken. Decreased contamination of drinking water by C. jejuni and S. enterica was also observed, suggesting a potential function of reducing horizontal transfer of enteric bacteria in poultry. Outcomes of this study reveal high potential of LC+mcra as sustainable approach to decrease colonization of C. jejuni and S. enterica in poultry gut along with other beneficial attributes.


Assuntos
Galinhas/microbiologia , Lacticaseibacillus casei/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Probióticos/uso terapêutico , Animais , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Campylobacter jejuni , Microbioma Gastrointestinal , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/prevenção & controle , Salmonella enterica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa