Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem ; 22(4): 1412-20, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24457089

RESUMO

Multidrug-resistance is a major cause of cancer chemotherapy failure in clinical treatment. Evidence shows that multidrug-resistant cancer cells are as sensitive as corresponding regular cancer cells under the exposure to anticancer ceramide analogs. In this work we designed five new ceramide analogs with different backbones, in order to test the hypothesis that extending the conjugated system in ceramide analogs would lead to an increase of their anticancer activity and selectivity towards resistant cancer cells. The analogs with the 3-ketone-4,6-diene backbone show the highest apoptosis-inducing efficacy. The most potent compound, analog 406, possesses higher pro-apoptotic activity in chemo-resistant cell lines MCF-7TN-R and NCI/ADR-RES than the corresponding chemo-sensitive cell lines MCF-7 and OVCAR-8, respectively. However, this compound shows the same potency in inhibiting the growth of another pair of chemo-sensitive and chemo-resistant cancer cells, MCF-7 and MCF-7/Dox. Mechanism investigations indicate that analog 406 can induce apoptosis in chemo-resistant cancer cells through the mitochondrial pathway. Cellular glucosylceramide synthase assay shows that analog 406 does not interrupt glucosylceramide synthase in chemo-resistant cancer cell NCI/ADR-RES. These findings suggest that due to certain intrinsic properties, ceramide analogs' pro-apoptotic activity is not disrupted by the normal drug-resistance mechanisms, leading to their potential use for overcoming cancer multidrug-resistance.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzenoacetamidas/química , Ceramidas/química , Ceramidas/farmacologia , Cetonas/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Benzenoacetamidas/síntese química , Benzenoacetamidas/farmacologia , Linhagem Celular Tumoral , Ceramidas/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Humanos , Isomerismo , Células MCF-7 , Conformação Molecular
2.
J Biol Chem ; 287(44): 37195-205, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22936806

RESUMO

Cancer stem cells are distinguished from normal adult stem cells by their stemness without tissue homeostasis control. Glycosphingolipids (GSLs), particularly globo-series GSLs, are important markers of undifferentiated embryonic stem cells, but little is known about whether or not ceramide glycosylation, which controls glycosphingolipid synthesis, plays a role in modulating stem cells. Here, we report that ceramide glycosylation catalyzed by glucosylceramide synthase, which is enhanced in breast cancer stem cells (BCSCs) but not in normal mammary epithelial stem cells, maintains tumorous pluripotency of BCSCs. Enhanced ceramide glycosylation and globotriosylceramide (Gb3) correlate well with the numbers of BCSCs in breast cancer cell lines. In BCSCs sorted with CD44(+)/ESA(+)/CD24(-) markers, Gb3 activates c-Src/ß-catenin signaling and up-regulates the expression of FGF-2, CD44, and Oct-4 enriching tumorigenesis. Conversely, silencing glucosylceramide synthase expression disrupts Gb3 synthesis and selectively kills BCSCs through deactivation of c-Src/ß-catenin signaling. These findings highlight the unexploited role of ceramide glycosylation in selectively maintaining the tumorous pluripotency of cancer stem cells. It speculates that disruption of ceramide glycosylation or globo-series GSL is a useful approach to specifically target BCSCs specifically.


Assuntos
Neoplasias da Mama/enzimologia , Ceramidas/metabolismo , Glucosiltransferases/metabolismo , Células-Tronco Neoplásicas/enzimologia , Animais , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Glicosilação , Humanos , Receptores de Hialuronatos/metabolismo , Separação Imunomagnética , Células MCF-7 , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Esferoides Celulares/efeitos dos fármacos , beta Catenina/metabolismo
3.
Mol Cancer ; 9: 145, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20540746

RESUMO

BACKGROUND: Drug resistance is the outcome of multiple-gene interactions in cancer cells under stress of anticancer agents. MDR1 overexpression is most commonly detected in drug-resistant cancers and accompanied with other gene alterations including enhanced glucosylceramide synthase (GCS). MDR1 encodes for P-glycoprotein that extrudes anticancer drugs. Polymorphisms of MDR1 disrupt the effects of P-glycoprotein antagonists and limit the success of drug resistance reversal in clinical trials. GCS converts ceramide to glucosylceramide, reducing the impact of ceramide-induced apoptosis and increasing glycosphingolipid (GSL) synthesis. Understanding the molecular mechanisms underlying MDR1 overexpression and how it interacts with GCS may find effective approaches to reverse drug resistance. RESULTS: MDR1 and GCS were coincidently overexpressed in drug-resistant breast, ovary, cervical and colon cancer cells; silencing GCS using a novel mixed-backbone oligonucleotide (MBO-asGCS) sensitized these four drug-resistant cell lines to doxorubicin. This sensitization was correlated with the decreased MDR1 expression and the increased doxorubicin accumulation. Doxorubicin treatment induced GCS and MDR1 expression in tumors, but MBO-asGCS treatment eliminated "in-vivo" growth of drug-resistant tumor (NCI/ADR-RES). MBO-asGCS suppressed the expression of MDR1 with GCS and sensitized NCI/ADR-RES tumor to doxorubicin. The expression of P-glycoprotein and the function of its drug efflux of tumors were decreased by 4 and 8 times after MBO-asGCS treatment, even though this treatment did not have a significant effect on P-glycoprotein in normal small intestine. GCS transient transfection induced MDR1 overexpression and increased P-glycoprotein efflux in dose-dependent fashion in OVCAR-8 cancer cells. GSL profiling, silencing of globotriaosylceramide synthase and assessment of signaling pathway indicated that GCS transfection significantly increased globo series GSLs (globotriaosylceramide Gb3, globotetraosylceramide Gb4) on GSL-enriched microdomain (GEM), activated cSrc kinase, decreased beta-catenin phosphorylation, and increased nuclear beta-catenin. These consequently increased MDR1 promoter activation and its expression. Conversely, MBO-asGCS treatments decreased globo series GSLs (Gb3, Gb4), cSrc kinase and nuclear beta-catenin, and suppressed MDR-1 expression in dose-dependent pattern. CONCLUSION: This study demonstrates, for the first time, that GCS upregulates MDR1 expression modulating drug resistance of cancer. GSLs, in particular globo series GSLs mediate gene expression of MDR1 through cSrc and beta-catenin signaling pathway.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos , Regulação da Expressão Gênica/fisiologia , Glucosiltransferases/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Inativação Gênica , Glucosiltransferases/genética , Humanos
4.
J Thorac Oncol ; 14(7): 1286-1295, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078775

RESUMO

INTRODUCTION: Although most patients with SCLC die within a few months of diagnosis, a subgroup of patients survive for many years. Factors determining long-term survivorship remain largely unknown. We present the first comprehensive comparative genomic and tumor microenvironment analyses of SCLC between patients with long-term survivorship and patients with the expected survivorship. METHODS: We compared surgically resected tumors of 23 long-term SCLC survivors (survival >4 years) and 18 SCLC survivors with the expected survival time (survival ≤2 years). There were no significant differences in clinical variables, including TNM staging and curative- versus non-curative-intent surgery between the groups. Gene expression profiling was performed by using microarrays, and tumor microenvironment analyses were performed by immunohistochemistry of prominent immune-related markers. RESULTS: Immune-related genes and pathways represented the majority of the differentially overexpressed genes in long-term survivorship compared with in expected survivorship. The differences in the immunological tumor microenvironment were confirmed by quantitative immunostaining. Increased numbers of tumor-infiltrating and associated lymphocytes were present throughout tumors of long-term survivors of SCLC. Several differentiating patterns of enhanced antitumor immunity were identified. Although some areas of the tumors of long-term survivors of SCLC also harbored higher numbers of suppressive immune cells (monocytes, regulatory lymphocytes, and macrophages), the ratios of these suppressive cells to CD3-positive lymphocytes were generally lower in the tumors of long-term survivors of SCLC, indicating a less tumor-suppressive microenvironment. CONCLUSIONS: Our data demonstrate that long-term survivorship of patients with SCLC is strongly influenced by the presence of the immune cells in the tumor microenvironment. Characterization of the antitumor immune responses may identify opportunities for individualized immunotherapies for SCLC.


Assuntos
Sobreviventes de Câncer/estatística & dados numéricos , Perfilação da Expressão Gênica , Neoplasias Pulmonares/mortalidade , Linfócitos do Interstício Tumoral/imunologia , Carcinoma de Pequenas Células do Pulmão/mortalidade , Microambiente Tumoral/imunologia , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Taxa de Sobrevida
5.
Hum Pathol ; 88: 48-59, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30946934

RESUMO

Some rhabdomyosarcomas and sarcomatoid carcinomas with heterologous rhabdomyosarcomatous elements resemble high-grade neuroendocrine carcinoma, creating a diagnostic difficulty. The purpose of this study was to characterize the overlap of adult genitourinary rhabdomyosarcomas, excluding those occurring at paratesticular sites, with high-grade neuroendocrine carcinoma and identify features helpful in their separation. Seventeen cases of rhabdomyosarcoma (11 from the urinary bladder and 3 each from kidney and prostate) were compared to 10 cases of high-grade neuroendocrine carcinoma from the urinary bladder. These tumors were analyzed by immunohistochemistry for desmin, MyoD1, myogenin, chromogranin, synaptophysin, CD56, TTF1, and ASCL1, and RNA sequencing was performed on 4 cases of bladder rhabdomyosarcoma (2 rhabdomyosarcomas and 2 sarcomatoid-rhabdomyosarcoma) and 10 cases of bladder high-grade neuroendocrine carcinoma. This was compared to public data from 414 typical urothelial carcinomas from The Cancer Genome Atlas dataset. Morphologic and immunophenotypic overlap with high-grade neuroendocrine carcinoma was seen in half of the bladder tumors, which included 4 rhabdomyosarcomas and 2 sarcomatoid rhabdomyosarcomas. RNA sequencing confirmed expression of neuroendocrine markers in these cases (2 rhabdomyosarcomas and 2 sarcomatoid rhabdomyosarcomas). Differential neuroendocrine differentiation was highlighted by ASCL1 protein expression only in high-grade neuroendocrine carcinoma. Moreover, both a pure alveolar rhabdomyosarcoma and sarcomatoid rhabdomyosarcoma of the urinary bladder demonstrated a fusion involving PPP1R12A. In summary, adult rhabdomyosarcomas of the urinary bladder are molecularly distinct from high-grade neuroendocrine carcinomas based on specific patterns of expression of myogenic and epithelial to mesenchymal transition-related transcription factors as well as the presence of a novel PPP1R12A fusion which is seen in a subset of cases.


Assuntos
Carcinoma Neuroendócrino/genética , Fusão Gênica/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética , Rabdomiossarcoma/genética , Neoplasias da Bexiga Urinária/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/análise , Diagnóstico Diferencial , Feminino , Expressão Gênica , Humanos , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Desenvolvimento Muscular/genética , Neoplasias da Próstata/genética
6.
Oncotarget ; 8(16): 27155-27165, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28460442

RESUMO

Achaete-scute homolog 1 (ASCL1) is a neuroendocrine transcription factor specifically expressed in 10-20% of lung adenocarcinomas (AD) with neuroendocrine (NE) differentiation (NED). ASCL1 functions as an upstream regulator of the RET oncogene in AD with high ASCL1 expression (A+AD). RET is a receptor tyrosine kinase with two main human isoforms; RET9 (short) and RET51 (long). We found that elevated expression of RET51 associated mRNA was highly predictive of poor survival in stage-1 A+AD (p=0.0057). Functional studies highlighted the role of RET in promoting invasive properties of A+AD cells. Further, A+AD cells demonstrated close to 10 fold more sensitivity to epidermal growth factor receptor (EGFR) inhibitors, including gefitinib, than AD cells with low ASCL1 expression. Treatment with EGF robustly induced phosphorylation of RET at Tyr-905 in A+AD cells with wild type EGFR. This phosphorylation was blocked by gefitinib and by siRNA-EGFR. Immunoprecipitation experiments found EGFR in a complex with RET in the presence of EGF and suggested that RET51 was the predominant RET isoform in the complex. In the microarray datasets of stage-1 and all stages of A+AD, high levels of EGFR and RET RNA were significantly associated with poor overall survival (p < 0.01 in both analyses). These results implicate EGFR as a key regulator of RET activation in A+AD and suggest that EGFR inhibitors may be therapeutic in patients with A+AD tumors even in the absence of an EGFR or RET mutation.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Processamento Alternativo , Carcinoma Neuroendócrino/mortalidade , Carcinoma Neuroendócrino/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Gradação de Tumores , Fosforilação , Prognóstico , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
7.
Integr Biol (Camb) ; 8(12): 1221-1231, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27796394

RESUMO

Carcinoma progression is influenced by interactions between epithelial tumor cells and components of their microenvironment. In particular, cell-extracellular matrix (ECM) interactions are known to drive tumor growth, metastatic potential, and sensitivity or resistance to therapy. Yet the intrinsic complexity of ECM composition within the tumor microenvironment remains a barrier to comprehensive investigation of these interactions. We present here a high-throughput cell microarray-based approach to study the impact of defined combinations of ECM proteins on tumor cell drug responses. Using this approach, we quantitatively evaluated the effects of 55 different ECM environments representing all single and two-factor combinations of 10 ECM proteins on the responses of lung adenocarcinoma cells to a selection of cancer-relevant small molecule drugs. This drug panel consisted of an alkylating agent and five receptor tyrosine kinase inhibitors. We further determined that expression of the neuroendocrine transcription factor ASCL1, which has been previously associated with poor patient outcome when co-expressed with the RET oncogene, altered cell responses to drugs and modulated cleavage of the pro-apoptotic protein caspase-3 depending on ECM context. Our results suggest that co-expression of specific ECM proteins with known genetic drivers in lung adenocarcinoma may impact therapeutic efficacy. Furthermore, this approach could be utilized to define the molecular mechanisms by which cell-matrix interactions drive drug resistance through integration with clinical cell samples and genomics data.


Assuntos
Biomarcadores Tumorais/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células A549 , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Genoma , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Análise Serial de Tecidos/instrumentação , Análise Serial de Tecidos/métodos
8.
BMC Res Notes ; 7: 601, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25187308

RESUMO

BACKGROUND: Fusarochromanone (FC101) is a small molecule fungal metabolite with a host of interesting biological functions, including very potent anti-angiogenic and direct anti-cancer activity. RESULTS: Herein, we report that FC101 exhibits very potent in-vitro growth inhibitory effects (IC50 ranging from 10nM-2.5 µM) against HaCat (pre-malignant skin), P9-WT (malignant skin), MCF-7 (low malignant breast), MDA-231 (malignant breast), SV-HUC (premalignant bladder), UM-UC14 (malignant bladder), and PC3 (malignant prostate) in a time-course and dose-dependent manner, with the UM-UC14 cells being the most sensitive. FC101 induces apoptosis and an increase in proportion of cells in the sub-G1 phase in both HaCat and P9-WT cell lines as evidenced by cell cycle profile analysis. In a mouse xenograft SCC tumor model, FC101 was well tolerated, non-toxic, and achieved a 30% reduction in tumor size at a dose of 8 mg/kg/day. FC101 is also a potent anti-angiogenenic agent. At nanomolar doses, FC101 inhibits the vascular endothelial growth factor-A (VEGF-A)-mediated proliferation of endothelial cells. CONCLUSIONS: Our data presented here indicates that FC101 is an excellent lead candidate for a small molecule anti-cancer agent that simultaneously affects angiogenesis signaling, cancer signal transduction, and apoptosis. Further understanding of the underlying FC101's molecular mechanism may lead to the design of novel targeted and selective therapeutics, both of which are pursued targets in cancer drug discovery.


Assuntos
Antineoplásicos/farmacologia , Cromonas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
9.
Int J Biochem Cell Biol ; 44(11): 1770-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22728310

RESUMO

Myelosuppression and drug resistance are common adverse effects in cancer patients with chemotherapy, and those severely limit the therapeutic efficacy and lead treatment failure. It is unclear by which cellular mechanism anticancer drugs suppress bone marrow, while drug-resistant tumors survive. We report that due to the difference of glucosylceramide synthase (GCS), catalyzing ceramide glycosylation, doxorubicin (Dox) eliminates bone marrow stem cells (BMSCs) and expands breast cancer stem cells (BCSCs). It was found that Dox decreased the numbers of BMSCs (ABCG2(+)) and the sphere formation in a dose-dependent fashion in isolated bone marrow cells. In tumor-bearing mice, Dox treatments (5mg/kg, 6 days) decreased the numbers of BMSCs and white blood cells; conversely, those treatments increased the numbers of BCSCs (CD24(-)/CD44(+)/ESA(+)) more than threefold in the same mice. Furthermore, therapeutic-dose of Dox (1mg/kg/week, 42 days) decreased the numbers of BMSCs while it increased BCSCs in vivo. Breast cancer cells, rather than bone marrow cells, highly expressed GCS, which was induced by Dox and correlated with BCSC pluripotency. These results indicate that Dox may have opposite effects, suppressing BMSCs versus expanding BCSCs, and GCS is one determinant of the differentiated responsiveness of bone marrow and cancer cells.


Assuntos
Células da Medula Óssea/enzimologia , Células da Medula Óssea/patologia , Neoplasias da Mama/patologia , Doxorrubicina/toxicidade , Glucosiltransferases/metabolismo , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Contagem de Células Sanguíneas , Células da Medula Óssea/efeitos dos fármacos , Neoplasias da Mama/sangue , Neoplasias da Mama/enzimologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Paclitaxel/toxicidade , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Células Tumorais Cultivadas
10.
Cancer Res ; 71(6): 2276-85, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21278235

RESUMO

Tumor suppressor p53 plays an essential role in protecting cells from malignant transformation by inducing cell-cycle arrest and apoptosis. Mutant p53 that is detected in more than 50% of cases of cancers loses its role in suppression of tumors but gains in oncogenic function. Strategies to convert mutant p53 into wild-type p53 have been suggested for cancer prevention and treatment, but they face a variety of challenges. Here, we report an alternative approach that involves suppression of glucosylceramide synthase (GCS), an enzyme that glycosylates ceramide and blunts its proapoptotic activity in cancer cells. Human ovarian cancer cells expressing mutant p53 displayed resistance to apoptosis induced by DNA damage. We found that GCS silencing sensitized these mutant p53 cells to doxorubicin but did not affect the sensitivity of cells with wild-type p53. GCS silencing increased the levels of phosphorylated p53 and p53-responsive genes, including p21(Waf1/Cip1), Bax, and Puma, consistent with a redirection of the mutant p53 cells to apoptosis. Reactivated p53-dependent apoptosis was similarly verified in p53-mutant tumors where GCS was silenced. Inhibition of ceramide synthase with fumonisin B1 prevented p53 reactivation induced by GCS silencing, whereas addition of exogenous C6-ceramide reactivated p53 function in p53-mutant cells. Our findings indicate that restoring active ceramide to cells can resuscitate wild-type p53 function in p53-mutant cells, offering preclinical support for a novel type of mechanism-based therapy in the many human cancers harboring p53 mutations.


Assuntos
Apoptose , Glucosiltransferases/metabolismo , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Ceramidas/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glicoesfingolipídeos/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Mutação , Neoplasias/patologia , Neoplasias/terapia , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa