Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pept Sci ; 22(5): 280-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26910400

RESUMO

Peptide dendrimers are a novel class of macromolecules of emerging interest with the potential of delayed renal clearance due to their molecular size and enhanced activity due to the multivalency effect. In this work, an active analogue of the disulfide-rich χ-conotoxin χ-MrIA (χ-MrIA), a norepinephrine reuptake (norepinephrine transporter) inhibitor, was grafted onto a polylysine dendron. Dendron decoration was achieved by employing copper-catalyzed alkyne-azide cycloaddition with azido-PEG chain-modified χ-MrIA analogues, leading to homogenous 4-mer and 8-mer χ-MrIA dendrimers with molecular weights ranging from 8 to 22 kDa. These dendrimers were investigated for their impact on peptide secondary structure, in vitro functional activity, and potential anti-allodynia in vivo. NMR studies showed that the χ-MrIA tertiary structure was maintained in the χ-MrIA dendrimers. In a functional norepinephrine transporter reuptake assay, χ-MrIA dendrimers showed slightly increased potency relative to the azido-PEGylated χ-MrIA analogues with similar potency to the parent peptide. In contrast to χ-MrIA, no anti-allodynic action was observed when the χ-MrIA dendrimers were administered intrathecally in a rat model of neuropathic pain, suggesting that the larger dendrimer structures are unable to diffuse through the spinal column tissue and reach the norepinephrine transporter. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Conotoxinas/administração & dosagem , Dendrímeros/síntese química , Hiperalgesia/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Animais , Células COS , Técnicas de Química Sintética/métodos , Química Click , Conotoxinas/síntese química , Conotoxinas/química , Conotoxinas/farmacologia , Reação de Cicloadição , Dendrímeros/administração & dosagem , Dendrímeros/química , Dendrímeros/farmacologia , Modelos Animais de Doenças , Dissulfetos/química , Desenho de Fármacos , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade
2.
Mol Pharmacol ; 88(3): 460-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26104547

RESUMO

In the spinal cord and periphery, adenosine inhibits neuronal activity through activation of the adenosine A1 receptor (A1R), resulting in antinociception and highlighting the potential of therapeutically targeting the receptor in the treatment of neuropathic pain. This study investigated the changes in adenosine tone and A1R signaling, together with the actions of a novel A1R positive allosteric modulator (PAM), VCP171 [(2-amino-4-(3-(trifluoromethyl)phenyl)thiophen-3-yl)(phenyl)methanone], on excitatory and inhibitory neurotransmission at spinal cord superficial dorsal horn synapses in a rat partial nerve-injury model of neuropathic pain. In the absence of A1R agonists, superfusion of the A1R antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 1 µM), produced a significantly greater increase in electrically evoked α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic current (eEPSC) amplitude in both lamina I and II neurons from nerve-injured animals than in controls, suggesting that endogenous adenosine tone is increased in the dorsal horn. Inhibitory GABAergic and glycinergic synaptic currents were also significantly increased by DPCPX in controls but there was no difference after nerve injury. The A1R agonist, N6-cyclopentyladenosine, produced greater inhibition of eEPSC amplitude in lamina II but not lamina I of the spinal cord dorsal horn in nerve-injured versus control animals, suggesting a functional increase in A1R sensitivity in lamina II neurons after nerve injury. The A1R PAM, VCP171, produced a greater inhibition of eEPSC amplitude of nerve-injury versus control animals in both lamina I and lamina II neurons. Enhanced adenosine tone and A1R sensitivity at excitatory synapses in the dorsal horn after nerve injury suggest that new generation PAMs of the A1R can be effective treatments for neuropathic pain.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Potenciais Pós-Sinápticos Excitadores , Neuralgia/tratamento farmacológico , Neurônios Aferentes/efeitos dos fármacos , Tiofenos/farmacologia , Agonistas do Receptor A1 de Adenosina/uso terapêutico , Regulação Alostérica , Animais , Hiperalgesia/tratamento farmacológico , Masculino , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Tiofenos/uso terapêutico , Xantinas/farmacologia
3.
Angew Chem Int Ed Engl ; 54(4): 1361-4, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25483297

RESUMO

The design of disulfide bond mimetics is an important strategy for optimising cysteine-rich peptides in drug development. Mimetics of the drug lead conotoxin MrIA, in which one disulfide bond is selectively replaced of by a 1,4-disubstituted-1,2,3-triazole bridge, are described. Sequential copper-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction) followed by disulfide formation resulted in the regioselective syntheses of triazole-disulfide hybrid MrIA analogues. Mimetics with a triazole replacing the Cys4-Cys13 disulfide bond retained tertiary structure and full in vitro and in vivo activity as norepinephrine reuptake inhibitors. Importantly, these mimetics are resistant to reduction in the presence of glutathione, thus resulting in improved plasma stability and increased suitability for drug development.


Assuntos
Conotoxinas/química , Cisteína/química , Dissulfetos/química , Triazóis/química , Sequência de Aminoácidos , Química Click , Conotoxinas/metabolismo , Desenho de Fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Peptidomiméticos , Relação Estrutura-Atividade
4.
Br J Pharmacol ; 175(12): 2337-2347, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29500820

RESUMO

BACKGROUND AND PURPOSE: Inhibitory neurotransmission plays an important role in controlling excitability within nociceptive circuits of the spinal cord dorsal horn. Loss of inhibitory signalling is thought to contribute to the development of pathological pain. Preclinical studies suggest that increasing inhibitory glycinergic signalling is a good therapeutic strategy for treating pain. One approach to increase synaptic glycine is to inhibit the activity of the glycine transporter 2 (GlyT2) on inhibitory nerve terminals. These transporters are involved in regulating glycine concentrations and recycling glycine into presynaptic terminals. Inhibiting activity of GlyT2 increases synaptic glycine, which decreases excitability in nociceptive circuits and provides analgesia in neuropathic and inflammatory pain models. EXPERIMENTAL APPROACH: We investigated the effects of reversible and irreversible GlyT2 inhibitors on inhibitory glycinergic and NMDA receptor-mediated excitatory neurotransmission in the rat dorsal horn. The effect of these drugs on synaptic signalling was determined using patch-clamp electrophysiology techniques to measure glycine- and NMDA-mediated postsynaptic currents in spinal cord slices in vitro. KEY RESULTS: We compared activity of four compounds that increase glycinergic tone with a corresponding increase in evoked glycinergic postsynaptic currents. These compounds did not deplete synaptic glycine release over time. Interestingly, none of these compounds increased glycine-mediated excitatory signalling through NMDA receptors. The results suggest that these compounds preferentially inhibit GlyT2 over G1yT1 with no potentiation of the glycine receptor and without inducing spillover from inhibitory to excitatory synapses. CONCLUSIONS AND IMPLICATIONS: GlyT2 inhibitors increase inhibitory neurotransmission in the dorsal horn and have potential as pain therapeutics. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Assuntos
Glicinérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Glicinérgicos/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo
5.
Sci Rep ; 8(1): 13397, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194442

RESUMO

Cone snails are a diverse group of predatory marine invertebrates that deploy remarkably complex venoms to rapidly paralyse worm, mollusc or fish prey. ω-Conotoxins are neurotoxic peptides from cone snail venoms that inhibit Cav2.2 voltage-gated calcium channel, demonstrating potential for pain management via intrathecal (IT) administration. Here, we isolated and characterized two novel ω-conotoxins, MoVIA and MoVIB from Conus moncuri, the first to be identified in vermivorous (worm-hunting) cone snails. MoVIA and MoVIB potently inhibited human Cav2.2 in fluorimetric assays and rat Cav2.2 in patch clamp studies, and both potently displaced radiolabeled ω-conotoxin GVIA (125I-GVIA) from human SH-SY5Y cells and fish brain membranes (IC50 2-9 pM). Intriguingly, an arginine at position 13 in MoVIA and MoVIB replaced the functionally critical tyrosine found in piscivorous ω-conotoxins. To investigate its role, we synthesized MoVIB-[R13Y] and MVIIA-[Y13R]. Interestingly, MVIIA-[Y13R] completely lost Cav2.2 activity and MoVIB-[R13Y] had reduced activity, indicating that Arg at position 13 was preferred in these vermivorous ω-conotoxins whereas tyrosine 13 is preferred in piscivorous ω-conotoxins. MoVIB reversed pain behavior in a rat neuropathic pain model, confirming that vermivorous cone snails are a new source of analgesic ω-conotoxins. Given vermivorous cone snails are ancestral to piscivorous species, our findings support the repurposing of defensive venom peptides in the evolution of piscivorous Conidae.


Assuntos
Analgésicos/química , Bloqueadores dos Canais de Cálcio/química , Evolução Molecular , ômega-Conotoxinas/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo N/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Gânglios Espinais/citologia , Humanos , Neuralgia/tratamento farmacológico , Neurônios Aferentes/efeitos dos fármacos , Ratos , Ratos Wistar , Caramujos , ômega-Conotoxinas/genética , ômega-Conotoxinas/farmacologia , ômega-Conotoxinas/uso terapêutico
6.
Sci Rep ; 7: 40883, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106092

RESUMO

Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, µ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9 nM) with at least 40-1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed no analgesic activity in formalin-, carrageenan- or FCA-induced pain in rodents when administered systemically. A broad lack of analgesic activity was also found for the selective NaV1.7 inhibitors PF-04856264 and phlotoxin 1. However, when administered with subtherapeutic doses of opioids or the enkephalinase inhibitor thiorphan, these subtype-selective NaV1.7 inhibitors produced profound analgesia. Our results suggest that in these inflammatory models, acute administration of peripherally restricted NaV1.7 inhibitors can only produce analgesia when administered in combination with an opioid.

7.
Sci Rep ; 6: 37104, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841371

RESUMO

The development of neuropathic pain involves persistent changes in signalling within pain pathways. Reduced inhibitory signalling in the spinal cord following nerve-injury has been used to explain sensory signs of neuropathic pain but specific circuits that lose inhibitory input have not been identified. This study shows a specific population of spinal cord interneurons, radial neurons, lose glycinergic inhibitory input in a rat partial sciatic nerve ligation (PNL) model of neuropathic pain. Radial neurons are excitatory neurons located in lamina II of the dorsal horn, and are readily identified by their morphology. The amplitude of electrically-evoked glycinergic inhibitory post-synaptic currents (eIPSCs) was greatly reduced in radial neurons following nerve-injury associated with increased paired-pulse ratio. There was also a reduction in frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSC) in radial neurons without significantly affecting mIPSC amplitude. A subtype selective receptor antagonist and western blots established reversion to expression of the immature glycine receptor subunit GlyRα2 in radial neurons after PNL, consistent with slowed decay times of IPSCs. This study has important implications as it identifies a glycinergic synaptic connection in a specific population of dorsal horn neurons where loss of inhibitory signalling may contribute to signs of neuropathic pain.


Assuntos
Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Receptores de Glicina/metabolismo , Nervo Isquiático/metabolismo , Transmissão Sináptica , Animais , Modelos Animais de Doenças , Masculino , Neuralgia/patologia , Células do Corno Posterior/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa