Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(12): e2219668120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36927156

RESUMO

Root anatomical phenotypes present a promising yet underexploited avenue to deliver major improvements in yield and climate resilience of crops by improving water and nutrient uptake. For instance, the formation of root cortical aerenchyma (RCA) significantly increases soil exploration and resource capture by reducing the metabolic costs of root tissue. A key bottleneck in studying such phenotypes has been the lack of robust high-throughput anatomical phenotyping platforms. We exploited a phenotyping approach based on laser ablation tomography, termed Anatomics, to quantify variation in RCA formation of 436 diverse maize lines in the field. Results revealed a significant and heritable variation for RCA formation. Genome-wide association studies identified a single-nucleotide polymorphism mapping to a root cortex-expressed gene-encoding transcription factor bHLH121. Functional studies identified that the bHLH121 Mu transposon mutant line and CRISPR/Cas9 loss-of-function mutant line showed reduced RCA formation, whereas an overexpression line exhibited significantly greater RCA formation when compared to the wild-type line. Characterization of these lines under suboptimal water and nitrogen availability in multiple soil environments revealed that bHLH121 is required for RCA formation developmentally as well as under studied abiotic stress. Overall functional validation of the bHLH121 gene's importance in RCA formation provides a functional marker to select varieties with improved soil exploration and thus yield under suboptimal conditions.


Assuntos
Fatores de Transcrição , Zea mays , Zea mays/metabolismo , Fatores de Transcrição/metabolismo , Estudo de Associação Genômica Ampla , Raízes de Plantas/metabolismo , Solo , Água/metabolismo
2.
Plant Physiol ; 195(3): 1969-1980, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38446735

RESUMO

Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.


Assuntos
Etilenos , Gravitropismo , Ácidos Indolacéticos , Oryza , Raízes de Plantas , Zea mays , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Gravitropismo/efeitos dos fármacos , Gravitropismo/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Oryza/genética , Oryza/fisiologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Grão Comestível/efeitos dos fármacos , Grão Comestível/fisiologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Mutação/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Proc Natl Acad Sci U S A ; 119(30): e2201072119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858424

RESUMO

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.


Assuntos
Ácido Abscísico , Etilenos , Ácidos Indolacéticos , Oryza , Raízes de Plantas , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo
4.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881796

RESUMO

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Assuntos
Produtos Agrícolas , Gravitropismo , Hordeum , Proteínas de Plantas , Raízes de Plantas , Parede Celular/química , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Gravitropismo/genética , Hordeum/química , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Microscopia de Força Atômica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica
5.
New Phytol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666346

RESUMO

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning.

6.
Plant J ; 106(1): 159-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421204

RESUMO

The phytohormone cytokinin plays a significant role in nearly all aspects of plant growth and development. Cytokinin signaling has primarily been studied in the dicot model Arabidopsis, with relatively little work done in monocots, which include rice (Oryza sativa) and other cereals of agronomic importance. The cytokinin signaling pathway is a phosphorelay comprised of the histidine kinase receptors, the authentic histidine phosphotransfer proteins (AHPs) and type-B response regulators (RRs). Two negative regulators of cytokinin signaling have been identified: the type-A RRs, which are cytokinin primary response genes, and the pseudo histidine phosphotransfer proteins (PHPs), which lack the His residue required for phosphorelay. Here, we describe the role of the rice PHP genes. Phylogenic analysis indicates that the PHPs are generally first found in the genomes of gymnosperms and that they arose independently in monocots and dicots. Consistent with this, the three rice PHPs fail to complement an Arabidopsis php mutant (aphp1/ahp6). Disruption of the three rice PHPs results in a molecular phenotype consistent with these elements acting as negative regulators of cytokinin signaling, including the induction of a number of type-A RR and cytokinin oxidase genes. The triple php mutant affects multiple aspects of rice growth and development, including shoot morphology, panicle architecture, and seed fill. In contrast to Arabidopsis, disruption of the rice PHPs does not affect root vascular patterning, suggesting that while many aspects of key signaling networks are conserved between monocots and dicots, the roles of at least some cytokinin signaling elements are distinct.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética
7.
Plant Cell Environ ; 45(3): 637-649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037274

RESUMO

In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing new cultivars adapted to these environments, where production already suffers from climate change, is a major priority for food security. Here, we illustrate how breeding for specific root traits could improve crop resilience in Africa using three case studies covering very contrasting low-input agroecosystems. We first review how greater basal root whorl number and longer and denser root hairs increased P acquisition efficiency and yield in common bean in South East Africa. We then discuss how water-saving strategies, root hair density and deep root growth could be targeted to improve sorghum and pearl millet yield in West Africa. Finally, we evaluate how breeding for denser root systems in the topsoil and interactions with arbuscular mycorrhizal fungi could be mobilised to optimise water-saving alternate wetting and drying practices in West African rice agroecosystems. We conclude with a discussion on how to evaluate the utility of root traits and how to make root trait selection feasible for breeders so that improved varieties can be made available to farmers through participatory approaches.


Assuntos
Micorrizas , Agricultura , Fertilizantes , Fenótipo , Água
8.
Plant Cell Environ ; 45(3): 677-694, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854103

RESUMO

Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.


Assuntos
Arabidopsis , Raízes de Plantas , Arabidopsis/metabolismo , Produção Agrícola , Fenótipo , Raízes de Plantas/metabolismo , Rizosfera
9.
Plant Cell Environ ; 45(3): 837-853, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34169548

RESUMO

Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root angle employing a high-throughput field phenotyping platform. Genome-wide association mapping identified several single nucleotide polymorphisms (SNPs) associated with root angle, including one located in the root expressed CBL-interacting serine/threonine-protein kinase 15 (ZmCIPK15) gene (LOC100285495). Reverse genetic studies validated the functional importance of ZmCIPK15, causing a approximately 10° change in root angle in specific nodal positions. A steeper root growth angle improved nitrogen capture in silico and in the field. OpenSimRoot simulations predicted at 40 days of growth that this change in angle would improve nitrogen uptake by 11% and plant biomass by 4% in low nitrogen conditions. In field studies under suboptimal N availability, the cipk15 mutant with steeper growth angles had 18% greater shoot biomass and 29% greater shoot nitrogen accumulation compared to the wild type after 70 days of growth. We propose that a steeper root growth angle modulated by ZmCIPK15 will facilitate efforts to develop new crop varieties with optimal root architecture for improved performance under edaphic stress.


Assuntos
Nitrogênio , Zea mays , Calcineurina/genética , Calcineurina/metabolismo , Estudo de Associação Genômica Ampla , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Proteínas Quinases/metabolismo , Serina/genética , Serina/metabolismo , Treonina/metabolismo , Água/metabolismo , Zea mays/metabolismo
10.
Environ Res ; 212(Pt B): 113266, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35405130

RESUMO

The solar thermochemical CO2 splitting (CDS) is scrutinized via a redox ZnO/Zn cycle. The second law efficiency analysis is carried out by acquiring the required thermodynamic data from HSC Chemistry software. The main focus of this study is to explore the influence of reduction temperature (Tred), molar flow rate of inert sweep gas (n˙inert), and energy required for the gas separation on the solar-to-fuel energy conversion efficiency (ηsolar-to-fuel) of the ZnO/Zn cycle. All the calculations are conducted at a constant gas-to-gas heat recovery effectiveness (εgg) equal to 0.5. n˙inert required is recorded to be too high (5050 mol/s) at Tred equal to 1500 K and moderately low (15 mol/s) for Tred equal to 2000 K. The amount of thermal energy required to heat the inert/O2 gas mixture (from CDS temperature to separator-1 temperature) and inert sweep gas (from separator-1 temperature to reduction temperature) has a significant impact on the total thermal energy requirement of the cycle (Q˙TC). The rise in Tred from 1500 K to 2000 K shows a considerable decline in Q˙TC from 77417.5 kW to 1161.8 kW, respectively. Consequently, the highest ηsolar-to-fuel (17.0%) is recorded for Tred equal to 2000 K.

11.
Plant Cell ; 30(10): 2330-2351, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30115738

RESUMO

Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly available data sets profiling root gene expression under various environmental stress conditions suggested that this root endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/fisiologia , Raízes de Plantas/genética , Poliploidia , Arabidopsis/citologia , Arabidopsis/genética , Tamanho Celular , DNA de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Células Vegetais/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Análise Espaço-Temporal , Estresse Fisiológico/genética
12.
J Exp Bot ; 71(10): 3185-3197, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32080722

RESUMO

Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.


Assuntos
Raízes de Plantas , Zea mays , Fenótipo , Melhoramento Vegetal , Raízes de Plantas/genética , África do Sul , Zea mays/genética
13.
Proc Natl Acad Sci U S A ; 113(39): 11016-21, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27651491

RESUMO

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control the metabolism and homeostasis of the major form of auxin in plants, indole-3-acetic acid (IAA), remains unclear. In this paper, we initially describe the function of the Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1). Transcriptional and translational reporter lines revealed that AtDAO1 encodes a highly root-expressed, cytoplasmically localized IAA oxidase. Stable isotope-labeled IAA feeding studies of loss and gain of function AtDAO1 lines showed that this oxidase represents the major regulator of auxin degradation to 2-oxoindole-3-acetic acid (oxIAA) in Arabidopsis Surprisingly, AtDAO1 loss and gain of function lines exhibited relatively subtle auxin-related phenotypes, such as altered root hair length. Metabolite profiling of mutant lines revealed that disrupting AtDAO1 regulation resulted in major changes in steady-state levels of oxIAA and IAA conjugates but not IAA. Hence, IAA conjugation and catabolism seem to regulate auxin levels in Arabidopsis in a highly redundant manner. We observed that transcripts of AtDOA1 IAA oxidase and GH3 IAA-conjugating enzymes are auxin-inducible, providing a molecular basis for their observed functional redundancy. We conclude that the AtDAO1 gene plays a key role regulating auxin homeostasis in Arabidopsis, acting in concert with GH3 genes, to maintain auxin concentration at optimal levels for plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Dioxigenases/metabolismo , Genes de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Metabolômica , Modelos Biológicos , Mutação/genética , Oxirredução , Fenótipo , Filogenia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/metabolismo
15.
Plant Cell ; 25(8): 2865-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23943861

RESUMO

Gene expression profiling studies are usually performed on pooled samples grown under tightly controlled experimental conditions to suppress variability among individuals and increase experimental reproducibility. In addition, to mask unwanted residual effects, the samples are often subjected to relatively harsh treatments that are unrealistic in a natural context. Here, we show that expression variations among individual wild-type Arabidopsis thaliana plants grown under the same macroscopic growth conditions contain as much information on the underlying gene network structure as expression profiles of pooled plant samples under controlled experimental perturbations. We advocate the use of subtle uncontrolled variations in gene expression between individuals to uncover functional links between genes and unravel regulatory influences. As a case study, we use this approach to identify ILL6 as a new regulatory component of the jasmonate response pathway.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Arabidopsis/efeitos dos fármacos , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Anotação de Sequência Molecular , Oxilipinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Software
16.
iScience ; 27(6): 109936, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38832021

RESUMO

Auxin regulates plant growth and development through the transcription factors of the AUXIN RESPONSE FACTOR (ARF) gene family. ARF7 is one of five activators that bind DNA and elicit downstream transcriptional responses. In roots, ARF7 regulates growth, gravitropism and redundantly with ARF19, lateral root organogenesis. In this study we analyzed ARF7 cis-regulation, using different non-coding sequences of the ARF7 locus to drive GFP. We show that constructs containing the first intron led to increased signal in the root tip. Although bioinformatics analyses predicted several transcription factor binding sites in the first intron, we were unable to significantly alter expression of GFP in the root by mutating these. We instead observed the intronic sequences needed to be present within the transcribed sequences to drive expression in the root meristem. These data support a mechanism by which intron-mediated enhancement regulates the tissue specific expression of ARF7 in the root meristem.

17.
Trends Plant Sci ; 29(7): 814-822, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402016

RESUMO

The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture of immobile phosphorus from the topsoil. Thus, understanding the genetic regulation of the root angle is crucial for breeding crop varieties that can efficiently capture resources and enhance yield. Moreover, this understanding can contribute to developing varieties that effectively sequester carbon in deeper soil layers, supporting global carbon mitigation efforts. Here we review and consolidate significant recent discoveries regarding the molecular components controlling root angle in cereal crop species and outline the remaining research gaps in this field.


Assuntos
Grão Comestível , Raízes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/genética , Solo/química , Nitrogênio/metabolismo
18.
Nat Commun ; 15(1): 4367, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777820

RESUMO

The 3D architecture of RNAs governs their molecular interactions, chemical reactions, and biological functions. However, a large number of RNAs and their protein complexes remain poorly understood due to the limitations of conventional structural biology techniques in deciphering their complex structures and dynamic interactions. To address this limitation, we have benchmarked an integrated approach that combines cryogenic OrbiSIMS, a state-of-the-art solid-state mass spectrometry technique, with computational methods for modelling RNA structures at atomic resolution with enhanced precision. Furthermore, using 7SK RNP as a test case, we have successfully determined the full 3D structure of a native RNA in its apo, native and disease-remodelled states, which offers insights into the structural interactions and plasticity of the 7SK complex within these states. Overall, our study establishes cryo-OrbiSIMS as a valuable tool in the field of RNA structural biology as it enables the study of challenging, native RNA systems.


Assuntos
Conformação de Ácido Nucleico , RNA , RNA/química , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Modelos Moleculares , Ribonucleoproteínas/química
19.
Nat Commun ; 15(1): 1901, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429275

RESUMO

A sustainable supply of plant protein is critical for future generations and needs to be achieved while reducing green house gas emissions from agriculture and increasing agricultural resilience in the face of climate volatility. Agricultural diversification with more nutrient-rich and stress tolerant crops could provide the solution. However, this is often hampered by the limited availability of genomic resources and the lack of understanding of the genetic structure of breeding germplasm and the inheritance of important traits. One such crop with potential is winged bean (Psophocarpus tetragonolobus), a high seed protein tropical legume which has been termed 'the soybean for the tropics'. Here, we present a chromosome level winged bean genome assembly, an investigation of the genetic diversity of 130 worldwide accessions, together with two linked genetic maps and a trait QTL analysis (and expression studies) for regions of the genome with desirable ideotype traits for breeding, namely architecture, protein content and phytonutrients.


Assuntos
Fabaceae , Melhoramento Vegetal , Fabaceae/genética , Genômica , Agricultura , Glycine max
20.
Trends Plant Sci ; 28(6): 611-613, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997439

RESUMO

During hypocotyl development, an asymmetric auxin gradient causes differential cell elongation, leading to tissue bending and apical hook formation. Recently, Ma et al. identified a molecular pathway that links auxin with endoreplication and cell size through cell wall integrity sensing, cell wall remodeling, and regulation of cell wall stiffness.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Endorreduplicação , Ácidos Indolacéticos/metabolismo , Tamanho Celular , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa