Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag ; 183: 143-152, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38754182

RESUMO

In the present study, press mud (PM), a major waste by-product from sugar industries, was subjected to hydrothermal pretreatment (HTP) to create resource recovery opportunities. The HTP process was performed with the PM samples in a laboratory scale high pressure batch reactor (capacity = 0.7 L) at 160 °C and 200 °C temperatures (solids content = 5 % and 30 %). The pretreatment resulted in separation of solid and liquid phases which are termed as solid hydrochar (HC) and process water (PW), respectively. High heating value (HHV) of HC was âˆ¼14-18 MJ kg-1, slightly higher than that of PM (14 MJ kg-1). The thermogravimetric analysis showed about 1.5-1.7 times higher heat release from HC burning compared to that observed from combustion of PM. Apart from this, the HC and PM showed no phytotoxicity during germination of mung bean (Vigna radiata). Moreover, the biochemical methane potential test on the PW showed a generation of 167-245 mL biogas per gram of chemical oxygen demand added. Hence, the HTP offers several resource recovery opportunities from PM which may also reduce the risks of environmental degradation.


Assuntos
Temperatura Alta , Água/química , Resíduos Industriais/análise , Biocombustíveis/análise , Análise da Demanda Biológica de Oxigênio , Termogravimetria
2.
Chemosphere ; 210: 987-997, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30208559

RESUMO

Geogenic arsenic (As) contamination in Bengal Delta Plain is a growing environmental and research concern. Cultivation of staple crops like paddy on these contaminated fields is one of the major routes for human dietary exposure. The present study investigates changes of arsenic concentrations in paddy plant parts, root soil and surface soil throughout the various phases of pre-monsoon (boro) cultivation. Arsenic uptake property of paddy plants collected from 10 fields was found to be dependent on the variety of paddy plant (like Minikit, Jaya) rather than arsenic levels in groundwater (0.074-0.301 mg/l) or soil (25.3-60 mg/kg). Arsenic is translocated from root to aerial parts in descending order. Leaf, stem, root, root soil and surface soil showed a similar trend in their change of arsenic concentration throughout the cultivation period. Arsenic concentration was highest in vegetative phase; sharply declined in reproductive phase; followed by moderate increase in ripening phase. The young root tissues in vegetative (primary) phase could uptake arsenic at a much faster rate than the older tissues in later phases. With the growth of the plant, higher concentrations of iron in root soil in the reproductive phase confirmed the formation of iron plaques on the surface of the root, which sequester arsenic and prevented its uptake by plants. Finally, co-precipitation of arsenic with iron released from crystallized iron plaques results in loosening of the iron plaques from root surface. Thus, soil arsenic concentration increases in the final phase of cultivation which in turn contributes to increased concentration in plant parts.


Assuntos
Arsênio/análise , Produtos Agrícolas , Oryza/fisiologia , Estações do Ano , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa