Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 56(7): 559-569, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28379620

RESUMO

The accurate classification of non-small cell lung carcinoma (NSCLC) into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) is essential for both clinical practice and lung cancer research. Although the standard WHO diagnosis of NSCLC on biopsy material is rapid and economic, more than 13% of NSCLC tumors in the USA are not further classified. The purpose of this study was to analyze the genome-wide pattern differences in copy number variations (CNVs) and to develop a CNV signature as an adjunct test for the routine histopathologic classification of NSCLCs. We investigated the genome-wide CNV differences between these two tumor types using three independent patient datasets. Approximately half of the genes examined exhibited significant differences between LUAD and LUSC tumors and the corresponding non-malignant tissues. A new classifier was developed to identify signature genes out of 20 000 genes. Thirty-three genes were identified as a CNV signature of NSCLC. Using only their CNV values, the classification model separated the LUADs from the LUSCs with an accuracy of 0.88 and 0.84, respectively, in the training and validation datasets. The same signature also classified NSCLC tumors from their corresponding non-malignant samples with an accuracy of 0.96 and 0.98, respectively. We also compared the CNV patterns of NSCLC tumors with those of histologically similar tumors arising at other sites, such as the breast, head, and neck, and four additional tumors. Of greater importance, the significant differences between these tumors may offer the possibility of identifying the origin of tumors whose origin is unknown.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/classificação , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/diagnóstico , Neoplasias/genética
2.
BioData Min ; 12: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31391866

RESUMO

Tremendous amount of whole-genome sequencing data have been provided by large consortium projects such as TCGA (The Cancer Genome Atlas), COSMIC and so on, which creates incredible opportunities for functional gene research and cancer associated mechanism uncovering. While the existing web servers are valuable and widely used, many whole genome analysis functions urgently needed by experimental biologists are still not adequately addressed. A cloud-based platform, named CG (ClickGene), therefore, was developed for DIY analyzing of user's private in-house data or public genome data without any requirement of software installation or system configuration. CG platform provides key interactive and customized functions including Bee-swarm plot, linear regression analyses, Mountain plot, Directional Manhattan plot, Deflection plot and Volcano plot. Using these tools, global profiling or individual gene distributions for expression and copy number variation (CNV) analyses can be generated by only mouse button clicking. The easy accessibility of such comprehensive pan-cancer genome analysis greatly facilitates data mining in wide research areas, such as therapeutic discovery process. Therefore, it fills in the gaps between big cancer genomics data and the delivery of integrated knowledge to end-users, thus helping unleash the value of the current data resources. More importantly, unlike other R-based web platforms, Dubbo, a cloud distributed service governance framework for 'big data' stream global transferring, was used to develop CG platform. After being developed, CG is run on an independent cloud-server, which ensures its steady global accessibility. More than 2 years running history of CG proved that advanced plots for hundreds of whole-genome data can be created through it within seconds by end-users anytime and anywhere. CG is available at http://www.clickgenome.org/.

3.
Transl Lung Cancer Res ; 7(4): 439-449, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225209

RESUMO

BACKGROUND: While tobacco exposure is the cause of the vast majority of lung cancers, an important percentage arise in lifetime never smokers. Documenting the precise extent of tobacco induced molecular changes may be of importance. Also, the contribution of environmental tobacco smoke (ETS) is difficult to assess. METHODS: We developed and validated a quantitative method to assess the extent of tobacco related molecular damage by combing the most characteristic changes associated with tobacco smoke, the tumor mutation burden (TMB) and type of molecular changes present in lung cancers. Using maximum entropy (MaxEnt) as a classifier, we developed a F score. F score values >0 were considered to show evidence of tobacco related molecular damage, while values ≤0 were considered to lack evidence of tobacco related molecular damage. Compared to the stated patient tobacco exposure histories, the F scores had sensitivity, specificity and accuracy values of 85-87%. Using this method, we analyzed public data sets of lung adenocarcinoma (LUAD), lung squamous cell (LUSC) and small cell lung cancer (SCLC). RESULTS: Less than 10% of LUSCs and SCLCs had negative F scores, while 27% to 35% of LUADs had positive scores. The F score showed a highly significant downward trend when LUADs were subdivided into the following categories: ever, reformed ≤15 years, reformed >15 years and never smokers. Most of the examined bronchial carcinoids (a lung cancer type not associated with smoke exposure) had negative F scores. In addition, most LUADs with EGFR mutations had negative F scores, while almost all with KRAS mutations had positive scores. CONCLUSIONS: We have established and validated a quantitative assay that will be of use in assessing the presence and degree of smoke associated molecular damage in lung cancers arising in ever and never smokers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa