Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 66(4): 475-489, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28035433

RESUMO

Adoptive immunotherapy leveraging chimeric antigen receptor-modified T (CAR-T) cells holds great promise for the treatment of cancer. However, tumor-associated antigens often have low expression levels in normal tissues, which can cause on-target, off-tumor toxicity. Recently, we reported that GPC3-targeted CAR-T cells could eradicate hepatocellular carcinoma (HCC) xenografts in mice. However, it remains unknown whether on-target, off-tumor toxicity can occur. Therefore, we proposed that dual-targeted CAR-T cells co-expressing glypican-3 (GPC3) and asialoglycoprotein receptor 1 (ASGR1) (a liver tissue-specific protein)-targeted CARs featuring CD3ζ and 28BB (containing both CD28 and 4-1BB signaling domains), respectively, may have reduced on-target, off-tumor toxicity. Our results demonstrated that dual-targeted CAR-T cells caused no cytotoxicity to ASGR1+GPC3- tumor cells, but they exhibited a similar cytotoxicity against GPC3+ASGR1- and GPC3+ASGR1+ HCC cells in vitro. We found that dual-targeted CAR-T cells showed significantly higher cytokine secretion, proliferation and antiapoptosis ability against tumor cells bearing both antigens than single-targeted CAR-T cells in vitro. Furthermore, the dual-targeted CAR-T cells displayed potent growth suppression activity on GPC3+ASGR1+ HCC tumor xenografts, while no obvious growth suppression was seen with single or double antigen-negative tumor xenografts. Additionally, the dual-targeted T cells exerted superior anticancer activity and persistence against single-targeted T cells in two GPC3+ASGR1+ HCC xenograft models. Together, T cells carrying two complementary CARs against GPC3 and ASGR1 may reduce the risk of on-target, off-tumor toxicity while maintaining relatively potent antitumor activities on GPC3+ASGR1+ HCC.


Assuntos
Vacinas Anticâncer/imunologia , Carcinoma Hepatocelular/terapia , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/fisiologia , Animais , Receptor de Asialoglicoproteína/imunologia , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Glipicanas/imunologia , Humanos , Neoplasias Hepáticas/imunologia , Ativação Linfocitária , Camundongos , Camundongos SCID , Especificidade de Órgãos , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Sci Rep ; 13(1): 10508, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380717

RESUMO

A fundamental goal in cancer-associated genome sequencing is to identify the key genes. Protein-protein interactions (PPIs) play a crucially important role in this goal. Here, human reference interactome (HuRI) map was generated and 64,006 PPIs involving 9094 proteins were identified. Here, we developed a physical link and co-expression combinatory network construction (PLACE) method for genes of interest, which provides a rapid way to analyze genome sequencing datasets. Next, Kaplan‒Meier survival analysis, CCK8 assays, scratch wound assays and Transwell assays were applied to confirm the results. In this study, we selected single-cell sequencing data from patients with hepatocellular carcinoma (HCC) in GSE149614. The PLACE method constructs a protein connection network for genes of interest, and a large fraction (80%) of the genes (screened by the PLACE method) were associated with survival. Then, PLACE discovered that transmembrane protein 14B (TMEM14B) was the most significant prognostic key gene, and target genes of TMEM14B were predicted. The TMEM14B-target gene regulatory network was constructed by PLACE. We also detected that TMEM14B-knockdown inhibited proliferation and migration. The results demonstrate that we proposed a new effective method for identifying key genes. The PLACE method can be used widely and make outstanding contributions to the tumor research field.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Mapeamento Cromossômico , Análise de Sequência de RNA
3.
Med Oncol ; 39(5): 51, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150321

RESUMO

BACKGROUND: Non-small cell lung carcinoma (NSCLC) accounts for the majority of lung cancer which is one of the most common cancer types and results in high percentage of cancer-related deaths. Although NSCLC patients have been benefiting from the existing standard treatments, more candidate biomarkers for effective diagnosis and targets for therapy are still required to be uncovered. The expression pattern and biological function of Excision repair cross-complementation group 6 like (ERCC6L) in NSCLC are ill-investigated. METHODS: We performed bioinformatic analyses in NSCLC patients with lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC), respectively. Patient survival determination and meta-analysis were carried out to check the clinical significance of ERCC6L. Datamining was also performed to evaluate the ERCC6L mRNA and protein expression levels in patients with LUAD and the correlation with immune cell infiltration. In silico prediction indicated the potential interacting proteins and correlated pathways of ERCC6L in LUAD. Loss-of-function studies were performed to determine the role of ERCC6L in LUAD cells. RESULTS: Here, we found that ERCC6L is upregulated in patients with LUAD and LUSC and is strongly associated with poor outcomes of LUAD, but not LUSC, patients. In addition, ERCC6L mRNA and protein were shown to be more expressed in patients with advanced stages of LUAD. Finally, functional analyses reveal the promoting effects of ERCC6L on LUAD cell survival, migration and invasion. CONCLUSIONS: Cohort data analysis and experimental validation shed light on the promising prognostic and therapeutic application of ERCC6L in LUAD, but maybe not LUSC, patients.


Assuntos
Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , DNA Helicases/genética , Neoplasias Pulmonares/patologia , Células A549 , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Prognóstico , RNA Mensageiro/genética , Taxa de Sobrevida
4.
J Cancer Res Clin Oncol ; 147(2): 499-505, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33225417

RESUMO

PURPOSE: There is not much progress in the treatment for lung squamous cell carcinoma LSCC in the past few years. Rapamycin Rapa, an inhibitor of mammalian target of rapamycin mTOR, has exhibited antitumor efficacy in a variety of malignant tumors. It has recently been reported that Rapamycin can induce autophagy signaling pathway in lung cancer and Glypican-3GPC3 can promote the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling pathway. The aim of this study is to investigate the mechanisms of rapamycin's antitumor efficacy in relation to GPC3/Wnt/ß-catenin pathway and autophagy in LSCC. METHODS: SK-MES-1 cells, a LSCC cell line, were treated with various concentrations of rapamycin with or without Glypican-3 GPC3-targeting siRNA. SK-MES-1 cell proliferation was determined by MTT assay. Protein expression levels of GPC3, ß-catenin, Beclin-1 were checked via western blotting. We established the xenograft mice model to investigate the suppression effect of rapamycin on LSCC. In addition, we further testified the metabolism protein of autophagy process using the xenograft tumor tissue. RESULTS: Rapamycin could inhibit the SK-MES-1 cell proliferation in a concentration-dependent manner both in vitro and in vivo by decreasing the GPC3 expression and downregulating the glypican-3/Wnt/ß-catenin signaling pathway. In addition, we found that GPC3 silencing can activate the glypican-3/Wnt/ß-catenin pathway and autophagy, which contribute to the suppression of tumor growth both in vitro and in vivo. CONCLUSION: Rapamycin suppresses the growth of lung cancer through down-regulating glypican-3/Wnt/ß-catenin signaling, which mediates with activation of autophagy. This study suggests GPC3 is a new promising target for rapamycin in the treatment of lung cancer.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Glipicanas/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Sirolimo/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Feminino , Glipicanas/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia
5.
Gene ; 754: 144859, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32535049

RESUMO

DNA topoisomerases essentially remove topological strains generated during DNA replication, transcription, DNA repair, and other cytogenetic processes. However, distinct expression level and prognostic significance of individual topoisomerase isoforms in gastric cancer (GC) remain largely unexplored. In this study, we utilized Oncomine and Kaplan-Meier plotter database to detect the mRNA expression level of individual topoisomerase isoforms as well as assess their prognostic significance in GC patients. With the exception of TOP3B and TOP2B, levels of all topoisomerase isoforms were found to be elevated in GC patients when compared to the normal tissues. Elevated expression of TOP1 and TOP1MT was relevant to longer overall survival (OS) in GC and gastric intestinal type adenocarcinoma (GITA) patients, but not in diffuse gastric adenocarcinoma (DFA) patients. Increased expression of TOP2A and TOP2B was related to better OS in GC, as well as in GITA and DFA patients. In contrast, increased expression TOP3A and TOP3B was associated with shorter OS in GC, as well as in GITA and DFA patients. We also applied the Tumor IMmune Estimation Resource (TIMER) tool to assess the correlations between distinct topoisomerase isoforms and the infiltrating immune cell landscape. Furthermore, we found that down-regulating the expression of TOP3A by shRNA significantly inhibited the proliferation and colony formation in GC cells compared to control shRNA treated cells. Thus our study lays the framework for utilizing topoisomerases in better understanding the complexity and heterogeneity of GC and for developing strategies for novel customized therapy in GC patients.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Neoplasias Gástricas/patologia , Adenocarcinoma/enzimologia , Biomarcadores Tumorais/genética , DNA Topoisomerases Tipo II/genética , Precursores Enzimáticos , Perfilação da Expressão Gênica , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Prognóstico , Neoplasias Gástricas/enzimologia , Taxa de Sobrevida
6.
Oncotarget ; 8(32): 52866-52876, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881778

RESUMO

There are limited strategies for the treatment of hepatocellular carcinoma (HCC). In this study, we prepared a Bispecific T cell engager (BiTE) targeting Glypican 3 (GPC3) and CD3. The GPC3/CD3 BiTE was prepared by fusing the single-chain variable fragment (scFv) of the humanized anti-GPC3 antibody (9F2) with the scFv of the anti-CD3 antibody (OKT3). The in vitro and in vivo cytotoxic activities of the GPC3/CD3 BiTE were evaluated against various HCC cell lines. The GPC3/CD3 BiTE could efficiently mediate the T cell killing of GPC3-positive HCC in vitro, which was dependent on GPC3 expression on the surface of HCC cells. Moreover, our study indicates that, in the presence of the GPC3/CD3 BiTE, T cells could efficiently destroy GPC3-positive human HCC cells in vitro and in vivo. Additionally, our study further proved that GPC3 is not expressed in normal tissues. Thus, GPC3 may be a cancer-specific antigen. Collectively, these findings suggest that this anti-GPC3 BiTE might be a promising anti-tumor reagent for patients with GPC3-positive HCC.

7.
Oncotarget ; 7(3): 2496-507, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26684028

RESUMO

There are unmet medical needs for patients with lung squamous cell carcinoma (LSCC). Therefore, in this study, we explored the antitumor potential of third-generation glypican 3 (GPC3)-redirected chimeric antigen receptor (CAR)-engineered T lymphocytes (CARgpc3 T cells) in tumor models of LSCC. First, we demonstrated by immunohistochemistry (IHC) that GPC3 was expressed in 66.3% of LSCC samples and in 3.3% of lung adenocarcinoma (LAD) samples but not in normal lung tissues. In the presence of GPC3-positive LSCC cells, CARgpc3 T cells were highly activated and increased in number. CARgpc3 T cells could specifically lyse GPC3-positive LSCC cells in vitro. In two established LSCC xenograft models, CARgpc3 T cells could almost completely eliminate the growth of GPC3-positive cells. Additionally, the CARgpc3 T cells were able to persist in vivo and efficiently infiltrate the cancerous tissues. Taken together, these findings indicate that CARgpc3 T cells might be a novel potential therapeutic agent for the treatment of patients with LSCC.


Assuntos
Carcinoma de Células Escamosas/terapia , Glipicanas/imunologia , Imunoterapia Adotiva , Neoplasias Pulmonares/terapia , Linfócitos T Citotóxicos/imunologia , Animais , Apoptose , Western Blotting , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Citometria de Fluxo , Glipicanas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos de Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 7(17): 24752-65, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27029073

RESUMO

There are still unmet medical needs for the treatment of glioblastoma (GBM), the most frequent and aggressive brain tumor worldwide. EGFRvIII, overexpressed in approximately 30% of GBM, has been regarded as a potential therapeutic target. In this study, we demonstrated that CH12, an anti-EGFRvIII monoclonal antibody, could significantly suppress the growth of EGFRvIII+ GBM in vivo; however, PTEN deficiency in GBM reduced the efficacy of CH12 by attenuating its effect on PI3K/AKT/mTOR pathway. To overcome this problem, CH12 was combined with the mTOR inhibitor rapamycin, leading to a synergistic inhibitory effect on EGFRvIII+PTEN- GBM in vivo. Mechanistically, the synergistic antitumor effect was achieved via attenuating EGFR and PI3K/AKT/mTOR pathway more effectively and reversing the STAT5 activation caused by rapamycin treatment. Moreover, the combination therapy suppressed angiogenesis and induced cancer cell apoptosis more efficiently. Together, these results indicated that CH12 and rapamycin could synergistically suppress the growth of EGFRvIII+PTEN- GBM, which might have a potential clinical application in the future.


Assuntos
Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/imunologia , Glioblastoma/tratamento farmacológico , Sirolimo/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Anticorpos Monoclonais/administração & dosagem , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Sirolimo/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncotarget ; 6(36): 38840-53, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26474285

RESUMO

Although Trastuzumab, an anti-HER2 antibody, benefits certain patients with HER2-overexpressing breast cancer, de novo or acquired trastuzumab resistance remains a haunting issue. EGFRvIII, co-expressing with HER2 in some breast tumors, indicates a poor clinical prognosis. However, the role of EGFRvIII in the function of trastuzumab is not clear. Here, we demonstrated that EGFRvIII overexpression contributed to de novo trastuzumab resistance and the feedback activation of STAT3 caused by trastuzumab also resulted in acquired resistance in EGFRvIII(+)HER2(+) breast cancers. CH12, a highly effective anti-EGFRvIII monoclonal antibody that preferentially binds to EGFRvIII, significantly suppressed the growth of EGFRvIII+HER2(+) breast cancer cells in vitro and in vivo. Importantly, CH12 in combination with trastuzumab had a synergistic inhibitory effect on EGFRvIII(+)HER2(+) breast cancers in vitro and in vivo via attenuating the phosphorylation of EGFR and HER2 and their downstream signal pathways more effectively and reversing STAT3 feedback activation. Moreover, the combination therapy suppressed angiogenesis and induced cell apoptosis significantly. Together, these results suggested a synergistic efficacy of the combination of trastuzumab with CH12 against EGFRvIII(+)HER2(+) breast cancers, which might be a potential clinical application in the future.


Assuntos
Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptores ErbB/imunologia , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Receptores ErbB/biossíntese , Feminino , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Trastuzumab/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa