Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 38(9): 1248-1256, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28603289

RESUMO

The prefrontal cortex (PFC) critical for higher cognition is implicated in neuropsychiatric diseases, such as Alzheimer's disease, depression and schizophrenia. The voltage-activated Kv7/KCNQ/M-channel or M-current modulates the neuronal excitability that defines the fundamental mechanism of brain function. However, whether M-current functions to regulate the excitability of PFC neurons remains elusive. In this study, we recorded the native M-current from PFC layer V pyramidal neurons in rat brain slices and showed that it modulated the intrinsic excitability and synaptic responses of PFC pyramidal neurons. Application of a specific M-channel blocker XE991 (40 µmol/L) or opener retigabine (10 µmol/L) resulted in inhibition or activation of M-current, respectively. In the current-clamp recordings, inhibition of M-current was evidenced by the increased average spike frequency and the reduced first inter-spike interval (ISI), spike onset latency and fast afterhyperpolarization (fAHP), whereas activation of M-current caused opposite responses. Furthermore, inhibition of M-current significantly increased the amplitude of excitatory postsynaptic potentials (EPSPs) and depolarized the resting membrane potential (RMP) without affecting the miniature EPSC (mEPSC) frequency. These data demonstrate that voltage-gated neuronal Kv7/KCNQ/M-current modulates the excitability and synaptic transmission of PFC neurons, suggesting that pharmacological modulation of M-current in the PFC may exert beneficial effects on cognitive deficits implicated in the pathophysiology of neuropsychiatric disorders.


Assuntos
Antracenos/farmacologia , Canais de Potássio KCNQ/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Antracenos/química , Relação Dose-Resposta a Droga , Canais de Potássio KCNQ/metabolismo , Masculino , Bloqueadores dos Canais de Potássio/química , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
2.
Acta Pharmacol Sin ; 36(7): 800-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948478

RESUMO

AIM: Alpha7-nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated Ca(2+)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Activation of α7 nAChR improves learning, memory, and sensory gating in animal models. To identify novel α7 nAChR agonists, we synthesized a series of small molecules and characterized a representative compound, Br-IQ17B, N-[(3R)-1-azabicyclo[2,2,2]oct-3-yl]-5-bromoindolizine-2-carboxamide, which specifically activates α7 nAChR. METHODS: Two-electrode voltage clamp (TEVC) recordings were primarily used for screening in Xenopus oocytes expressing human α7 nAChR. Assays, including radioisotope ligand binding, Western blots, whole-cell recordings of hippocampal culture neurons, and spontaneous IPSC recordings of brain slices, were also utilized to evaluate and confirm the specific activation of α7 nAChR by Br-IQ17B. RESULTS: Br-IQ17B potently activates α7 nAChR with an EC50 of 1.8±0.2 µmol/L. Br-IQ17B is selective over other subtypes such as α4ß2 and α3ß4, but it blocks 5-HT3A receptors. Br-IQ17B displaced binding of the α7 blocker [(3)H]-MLA to hippocampal crude membranes with a Ki of 14.9±3.2 nmol/L. In hippocampal neurons, Br-IQ17B evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. In brain slice recordings, Br-IQ17B enhanced GABAergic synaptic transmission in CA1 neurons. Mechanistically, Br-IQ17B increased ERK1/2 phosphorylation that was MLA-sensitive. CONCLUSION: We identified the novel, potent, and selective α7 agonist Br-IQ17B, which enhances synaptic transmission. Br-IQ17B may be a helpful tool to understand new aspects of α7 nAChR function, and it also has potential for being developed as therapy for schizophrenia and cognitive deficits.


Assuntos
Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Técnicas de Cultura de Órgãos , Células PC12 , Ratos , Ratos Sprague-Dawley , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa