Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(6): 8685-8697, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820311

RESUMO

Sensitivity of polymeric microdisks is evaluated for selected compounds in their vapor phase such as humidity, isopropanol, toluene, limonene, 1-butanol, and pentanoic acid (valeric acid). Among these compounds, pentanoic acid exhibits the highest sensitivity (23 pm/ppm) with a limit of detection estimated to be around 0.6 ppm. We are interested in the contribution of the geometry deformation due to polymer swelling on the sensitivity as it may be engineered to improve performance of gas sensing devices. Experimental observations show a trend where sensitivity to humidity increased with the ratio of the undercut over the radius of the microcavity.

2.
ACS Appl Mater Interfaces ; 16(4): 5067-5074, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38231197

RESUMO

We report a whispering gallery mode resonator on a pillar using inkjet printing combined with traditional microfabrication techniques. This approach enables several different polymers on the same chip for sensing applications. However, polymers inherently exhibit sensitivity to multiple stimuli. To mitigate temperature sensitivity, careful selection of design parameters is crucial. By precisely tuning the undercut-to-radius ratio of the resonator, a linear dependence in temperature sensitivity ranging from -41.5 pm/°C to 23.4 pm/°C, with a zero-crossing point at 47.6% is achieved. Consequently, it is feasible to fabricate sensing devices based on undercut microdroplets with minimal temperature sensitivity. The lowest measured temperature sensitivity obtained was 5.9 pm/°C, for a resonator with an undercut-to-radius ratio of 53%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa