Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(4): 045115, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357689

RESUMO

A new pressurized low-temperature combustion experiment has been commissioned at the Swiss Light Source, Paul Scherrer Institute. The experiment uses photoionization with tunable synchrotron radiation and double imaging photoelectron photoion coincidence (i2PEPICO) detection at the vacuum ultraviolet beamline. The experimental setup is described, including the high-pressure reactor experiment, sampling interface, and reactant delivery system. The CRF-PEPICO (Combustion Reactions Followed by Photoelectron Photoion Coincidence) endstation and VUV beamline are briefly elaborated. The novel aspects of the apparatus and the new components are elucidated in detail, such as the fluid supply system to the reactor and the reactor integration into the endstation. We also present a system overview of the experimental setup. The technical details are followed by a description of the experimental procedure used to operate the pressurized flow reactor setup. Finally, first experimental results demonstrating the capability of the setup are provided and analyzed. A major advantage of this new experiment is that the excellent isomer resolution capabilities of the i2PEPICO technique can be transferred to the investigation of reactions at elevated pressures of several bars. This enables the investigation of pressure effects on the reactivity of fuel mixtures and covers more realistic conditions found in technical combustors. The capability to obtain quantitative oxidation data is confirmed, and the main and certain intermediate species are quantified for a selected condition. The results show excellent agreement with a chemical kinetics model and previously published reference measurements performed with a gas chromatography setup.

2.
Rev Sci Instrum ; 85(2): 025101, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593390

RESUMO

Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa